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Samenvatting

Biometrie biedt de mogelijkheid om de identiteit van een persoon vast te stellen op ba-
sisvan fysieke of gedragsel genschappen. Enkele voorbeelden van fysieke eigenschappen
zijn vingerafdrukken, gezichtskenmerken of een irispatroon; voorbeelden van gedrags-
eigenschappen zijn loopbeweging, een handtekening, of spraakkarakteristieken. Omdat
deze biometrische eigenschappen toebehoren aan de persoon zelf, bestaat er een sterke
link tussen de persoon en het identificatiemiddel. Door deze sterke band verhoogt biome-
trie de veiligheid van toegangs- en grenscontrole systemen of het authenticeren van een
persoon op afstand in een netwerk. Daarnaast kan biometrie het authenticatieproces ge-
bruiksvriendelijker maken, omdat bijvoorbeeld een paswoord onthouden of het dragen
van een badge niet meer noodzakelijk is.

Het gebruik van biometrie blijft toenemen en wordt tegenwoordig al wereldwijd
toegepast in het electronisch paspoort, het zogenaamde ePassport. Om een persoon te
authenticeren dienen de biometrische informatie in de vorm van een referentietemplate
opgeslagen te worden tijdens de registratiefase, zoals het in het electronisch paspoort
gebeurd. Het grootschalig gebruik van biometrische systemen en het opslaan van
referentietemplates brengt nieuwe privacy- en veiligheidsrisico’s met zich mee. Voor-
beelden van zulke risico’s zijn (i) identiteitsfraude, (ii) traceerbaarheid, (iii) onvervang-
baarheid van de referentietemplate, en (iv) het achterhalen van gevoelige medische infor-
matie. Het reduceren van dezerisico’sisessentiegl bij grootschalig gebruik van biometrie.

Dezerisico’s kunnen beperkt worden door templ ateprotecti e technieken toe te passen.
De vereiste protectie-eigenschappen zijn (i) onomkeerbaarheid, (ii) vernieuwbaarheid,
(iii) en ontraceerbaarheid. Gedurende het laatste decennium werden diverse methoden
gepubliceerd om biometrische gegevens te beschermen, waaronder het helper data sys-
teem (HDS). Het fundamentele principe achter het HDS is het binden van een binaire
vector met de biometrische gegevens, door gebruik te maken van helper data en cryp-
tografische technieken. Die binding gebeurt zodanig dat de binaire vector reproduceer-
baar is gegeven nieuwe biometrische gegevens van hetzelfde individu. Hierbij wordt de
binaire vector gebruikt al's een cryptografische sleutel. De identiteitscontrole wordt veilig
uitgevoerd door middel van het vergelijken van de hash van de dleutel die zowel tijdens
de registratie- als de authenticatiefase zijn afgeleid. De lengte van de sleutel bepaalt de
mate van protectie.

Dit proefschrift beschrijft een uitgebreid onderzoek van het HDS, namélijk het
(i) bepalen van het theoretische classificatievermogen, (ii) afleiden van de bovengrens
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viii Samenvatting

van de deutellengte, (iii) analyseren van de onomkeerbaarheids- en ontraceerbaarheids-
eigenschappen voor verschillende bitextractiemethoden, en (iv) het bepalen van de opti-
male fusie methode.

Het theoretische classificatievermogen wordt bepaald door aan te nemen dat de fea
tures, die zijn afgeleid uit de biometrische gegevens, een Gaussische verdeling hebben.
De resultaten tonen aan dat een simpel model, waarbij uniformiteit van intra-klasse fea-
turevariantie en onafhankelijke featurecomponenten verondersteld worden, niet toereik-
end is om het classificatievermogen goed te schatten. Complexere modellen worden
geintroduceerd, waarbij de variabiliteit van de featurevariantieen de afhankelijkheid tussen
featurecomponenten in acht worden genomen. Op basis van het theoretisch model wordt
de invloed van de bitextractiemethode op het classificatievermogen van het biometrisch
systeem onderzocht. Het gebruik van een bitextractiemethode die een enkel bit per fea-
turecomponent met behulp van een vaste kwantisatiedrempel extraheert, leidt tot een ver-
liesin classificatievermogen.

Met behulp van het theoretisch model wordt de bovengrens afgeleid voor de lengte
van de cryptografische sleutel, op basis van de aanname dat de foutcorrigerende code op
de zogenaamde Shannonlimiet staat ingesteld. Het onderzoek toont de relatie aan tussen
het classificatievermogen van het biometrisch system en de lengte van de sleutel.

Verschillende kwetshaarheden die de onomkeerbaarheids- en ontraceerbaarheids-
eigenschappen negatief beinvloeden worden aangetoond met een bijbehorende oplossing.
De eerste kwetshaarheid betreft de bitextractiemethode DROBA, welke meerdere bits
per component kan extraheren. Voor deze bitextractiemethode wordt aangetoond dat
de onomkeerbaarheidseigenschap is aangetast. Een mogelijke oplossing hiervoor is het
beperken van het bitextractiemethode zonder verliesin classificatievermogen. De tweede
kwetsbaarheid betreft het gebruik van een lineaire foutcorrigerende code die negatieve
conseguenties heeft voor de ontraceerbaarheidseigenschap. Een mogelijke oplossing
is het introduceren van een specifiek randomisatieproces op de binaire vector die is
afgeleid van de biometrie. Als laatste wordt het verband geanalyseerd tussen het sys-
teem classificatie- en traceerbaarhei dsvermogen voor verschillende bitextractiemethoden.
In dit onderzoek varieert de mate van gebruik van persoonsgebondeninformatie dat wordt
opgeslagen tijdens de registratie fase. Het traceerbaarheidsvermogen stijgt naarmate de
persoonsgebonden informatie toeneemt. Verder tonen de resultaten aan dat in het geval
dat het aantal registratiewaarnemingen toeneemt het traceerbaarhei dsvermogen het clas-
sificatievermogen van het biometrisch system kan overtreffen.

De optimale fusiemethode, toepasbaar in het HDS, wordt bestudeerd voor
meerdere waarnemingen van een biometrische karakteristiek of meerdere feature-
extractiealgoritmen. Neemt men het gemiddelde van de features uit de gemaakte waarne-
mingen, dan leidt dit tot de meest compacte referentietemplate zonder verliesin classifi-
catievermogen. Wanneer meerdere feature-extractieal gorithmen dienen te worden gecom-
bineerd, blijkt fusie van scorestot het beste classificatievermogen leidt.



Summary

Biometrics enabl esthe establishment of a person’sidentity by means of the person’s phys-
iological or behavioral traits. Examples of the physical traits include fingerprints, face,
or iris and examples of behavioral properties include gait, signature, or voice. Biomet-
rics creates a strong link between the person and its credentials because the properties
belong to the person. Because of this strong link, biometrics can improve the security
in access- or border-control systems, or in case of a remote personal authentication in a
networked system. Furthermore, biometrics can make the personal authentication process
more convenient by replacing the burden of remembering passwords or carrying a badge
or token.

The use of biometrics looks promising as it is already being applied in electronic
passports, ePassports, on a global scale. Because the biometric data has to be stored as
a reference template on either a central or personal storage device, its wide-spread use
introduces new security and privacy risks such as (i) identity fraud, (i) cross-matching,
(i) irrevocability and (iv) leaking sensitive medical information. Mitigating theserisksis
essential to obtain the acceptance from the subjects of the biometric systems and therefore
facilitating the successfully implementation on alarge-scale basis.

A solution to mitigate these risksis to use template protection techniques, aso known
as privacy enhancing technologies (PET). The required protection properties are (i) irre-
versibility, (ii) renewability and (iii) unlinkability. Inthelast decade, different approaches
have been introduced in the literature, including the one known as the helper data system
(HDS). The fundamental principle of the HDS is to bind a binary vector with the bio-
metric sample with use of helper data and cryptography, as such that the binary vector
can be reproduced or released given another biometric sample. The binary vector is then
used as a cryptographic key. Theidentity check isthen performedin asecure way by com-
paring the hash of the key. Hence, the size of the key determinesthe amount of protection.

Thisthesis extensively investigatesthe HDS system, namely (i) the theoretical classi-
fication performance, (ii) the maximum key size, (iii) theirreversibility and unlinkability
properties, and (iv) the optimal fusion method.

The theoretical classification performance of the biometric system is determined by
assuming that the features extracted from the biometric sample are Gaussian distributed.
The results show that a simple model, which assumes independent feature components
and homogeneous within-class variance across all subjects, is not sufficient to estimate
the classification performance of the biometric system. More complex models are intro-
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duced incorporating the within-class variability and the dependencies between the fea-
tures. With the simple model, the influence of the bit extraction scheme on the classifica
tion performanceis investigated. Given a bit extraction scheme that extracts a single bit
per feature based on a fixed quantization threshold, the results indicate that the classifica-
tion performance before the bit extraction scheme is better than the performance after the
bit extraction.

With use of the theoretical framework, the maximum size of the key is determined by
assuming the error-correcting code to operate on Shannon’s bound. The study indicates
the relationship between the system classification performance and the maximum key
size.

Multiple vulnerabilities are analyzed and a solution is proposed. The first vulnerabil-
ity concerns the bit extraction scheme named DROBA, which can extract multiple bits
per component, where the original algorithm has a negative impact on the irreversibil-
ity property. A solution is proposed to restrict the DROBA agorithm such that no loss
of classification performance is observed. The second vulnerability concerns the use of
linear error-correcting codes, which has a negative impact on the unlinkability property.
A solution is the use of a specific randomization process on the extracted binary vec-
tor. Furthermore we analyze the relationship between the system and cross-matching
classification performance for different bit extraction schemes varying in the degree of
subject-specific information that is used. The results also show that when increasing the
number of enrolment samples the cross-matching performance can outperformthe system
performance.

The optimal way of applying multi-sample and multi-algorithm fusion with the HDS
is studied. Taking the average of features of the multiple enrollment samples has the ad-
vantage of a single protected template while having a similar classification performance.
In case of multi-algorithm fusion, applying fusion at score-level leads to the best classifi-
cation performance.



Compilacion

Biometria ta ofrece e posibilidad pa determina identidad di un persona, basa riba car-
acteristicanan fisico of di comportacion. Algun ehempel di caracteristicanan fysico ta
imprentadi dede, caracteristicadi cara of un patronchi di iris; caracteristicanan adecuado
di comportacion ta e manera di cana, un firma of e manera di papia. Pa motibo cu tur
esaki ta pertenece na e personames, ta surgi un relacion fuerte entre e personay e manera
di identificacion. Pamotibo di e laso fuerte, biometria ta mehora siguridad di systema di
entraday control na frontera of autenticidad di un persona riba distancia den un systema
di red. Ademas biometriapor haci e proceso di autenticidad di personamas complaciente,
pa motibo cu no ta necesario mas pa corda un codigo di entrada of cana cu badge.

E usamento di biometria ta munstra prometedor ya cu ta us' e caba den mundo elec-
tronico: por ehempel den e paspoort electronico, ePassport. Pa motibo cu mester warda
datonan biometrico como base (template) di referencia, manera den ePasport, e usamento
na scala grandi di biometriata lanta risiconan nobo di privacidad y siguridad. Ehempel-
nan di risiconan asina ta (i) fraude di identidad, (ii) autenticidad, (iii) base di referencia
irevocabel, y (iv) pone man riba informacion medico sensibel. Reduci e risiconan aki ta
esencia pae usamento na scalagrandi di biometria.

E solucion palimita e risiconan ta tumaluga cu implementacion di tecnicanan di pro-
tecciondi e base (template), conosi como etecnologiadi proteccion di privacidad, Privacy
Enhancing Technologies (PET). E caracteristicanan exigi di proteccion ta (i) irevocabel,
(ii) renobabel, y (iii) bo no por localisanan. Durante e ultimo decada, nan a publicadifer-
ente metodo pa proteha e datonan biometrico, entre nan e " Helper Data System” (HDS).
E principio fundamental tras di e HDS ta pa acopla un vector cu datonan biometrico cu
ayudo di "helper data’ y cryptografia, di tal forma cu por reproduci of publica e vector
binaire cu datonan biometrico nobo di e mesun individuo. Por usa anto e vector binair
como un yabi cryptografico. E control di indentificacion ta ehecuta na manera sigur cu
comparacion di e mexcla (hash) di e yabi. Larguradi e yabi ta determina grandura di
proteccion.

E tesisdoctoral aki tadescribi uninvestigacionamplio di e HDS, sea (i) determinacion
di e poder teoretico di clasificacion, (ii). determinae nivel maximo di e larguradi e yabi,
(iii) analisis di e caracteristicairevocabel y imposibel palocalisa cu diferente metodo " bit
extractie’ y (iv) e metodo obtimal di fusion.

E poder teoretico di clasificacion ta determina door di asumi, cu e caracteristicanan,
saca for di e datonan biometrico ta distribui segun e systema Gaussis. E resultadonan
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ta munstra cu un modelo simpel, den cual ta supone uniformidad di variante intra-clase
di e caracteristicanan y cu e componentenan di e caracteristicanan ta independiente, no
ta suficiente pa calcula exactamente e forsa di clasificacion. Nos a introduci model onan
mas compleho cu ta carga cu han e variabilidad y dependencia entre e componentenan
di e caracteristicanan. Basa riba e cuadra teoretico, nan ta investiga e influencia di e
metodo di extracto di cada bit riba e poder di clasificacion di e systema biometrico. E
usamento di un metodo di extracto di cadabit, cu talocalisaun solo bit pa componente di
e caracteristicanan cu ayudo di un bareradi cuantisacion fiho, tamustracu e comportacion
di clasificacion prome cu e proceso di extracto di bit ta miho compara cu despues di e
extracto di bit. Cu ayudo di e modelo teoretico, ta determinae nivel maximo palarguradi
e yabi, basa riba acceptacion cu e codigo di coreccion di fayo tatraha segun e systemadi
Shannon. E investigacion tamunstra e relacion entre e poder di clasificacion di e systema
y larguradi e yabi.

Nos ta analisa diferente asunto vulnerabel y ta propone e solucion corespondiente. E
prome asunto vulnerabel ta trata e metodo di extracto di bit DROBA, cu por aisla mas
cu un bit pa componente, cu ta munstra cu e caracter irevocabel ta atacha. Un posibel
solucion pa esaki ta limitacion di un algoritmo di extracto di bit sin ta perde e poder di
clasificacion. E di dos caso vulnerabel tatratae usamento di un codigo linear di coreccion
di fayo, cu tin consecuentianegativo pa e caracter di no por localis'e. Un posibel solucion
ta introduccion di un proceso di arbitrahe specifico riba e vector binair extradita. Como
ultimo nos ta analisa e relacion entre e systema di poder di clasificacion y localisa pa
diferente metodo di extracto di bit, cu tavaria den e granduradi usamento di informacion
cu ta mara na persona. Mas cu nan ta usa e informacion mara na persona, mas miho e
poder di localisatabira. Ademas e resultadonan ta munstra, cu den caso cu e cantidad di
observacionnan di registracion ta aumenta, e poder di localisacion por ta hasta mas miho
cu e poder di clasificacion di e systema biometrico.

Nos a studia e manera optimal di fusion cu e HDS pa mas observacion di un caracter-
istica biometrico of mas cu un extracto algoritmico di e caracteristicanan. E promedio di
e caracteristicanan for di diferente observacion ta hiba pa e base di referencia mas com-
pacto, sin perdemento di e poder di clasificacion. Na momento cu mester combina mas
extracto algoritmico di e caracteristicanan, ta resulta cu e fusion riba e nivel di resultado
tageneraemiho forsadi clasificacion.

Translated by Emile Kelkboom Sr.
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Chapter

| ntroduction

The size and complexity of our society and world calls for the ability to accurately and
automatically identify people, aso referred to as personal identification [1]. Personal
identification can be established by means of verification or recognition [1]. In a veri-
fication setup, also referred to as (user-)authentication [2—4], the system tries to verify
whether the identity claim provided by a subject is correct, namely “Am | who | claim
| am?’. In arecognition setup, your identity is automatically established from a set of
known identities, e.g. adatabase of identities. Inthe literature, recognitionisalso referred
to asidentification. Thisthesisis mainly focused on the verification/authentication setup
as validating a claimed identity is the most common method for identity management in
commercial and governmental applications.

The most common approaches for user-authentication being used today are based
on (i) persona possessions (what you have), (ii) knowledge (what you know), and (iii)
biometrics (who you are), from which the latter is becoming more popular. Examples
of personal possessions include passports, national identity cards, driver's license, bank
cards, company badges, and the old fashioned tangible keys. Examples of knowledge-
based authentication include the use of passwords, personal identification numbers (PIN),
and answers to a set of questions to which the answers have been recorded in an earlier
phase. Biometrics is the field of uniquely and automatically recognizing humans based
upon one or more intrinsic physiological or behavioral traits. Examples of physiological
traits include fingerprint, face, iris, reting, hand geometry, and palm, while examples of
behavioral traits include voice, signature, keystroke dynamics, and gait. Hence, biomet-
rics creates a strong connection between an individual’sidentity and body. There are also
systems that combine two or more factors of authentication, referred to as multi-factor
authentication, such as payment systems where both the ATM card and its corresponding
PIN have to be provided, or the passport that includes a face image and other personal
information.

The drawback of possession-based authentication is that the corresponding object has
to be presented, while it can be forgotten, lost or stolen. Similarly, passwords used in
knowledge-based authentication are often forgotten. The studies [5, 6] analyzed the num-

1
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ber of passwords people have to remember. Both studies report that roughly 20% of the
participants have to remember 15 or more passwords for their job, while 35% and 57%,
respectively, have between six and 15 passwords to remember. A more recent study [7]
reports that 66% of the participants have 11 or more password-protected accounts, where
47% use different passwords for each or almost al accounts. Besides these convenience
drawbacks, possession- and knowledge-based authentication are also sensitive to the re-
pudiation attack. For example, a person could legitimately gain access to a building by
using his own badge and still claim it wasn't him because he assumably lost his badge.
Similarly, this attack also exists when using passwords.

These drawbacks can be overcome by using biometrics. It is very difficult to “for-
get” or “lose” your biometric trait. Therefore, biometrics can make the authentication
procedure more convenient by replacing the burden of remembering long passwords or
carrying a badge. Theincorporation of physiological and/or behavioral traits as evidence
for authentication also helps to prevent a repudiation attack.

Because of its advantages, theinterest in biometric systems has significantly increased
in recent years. Examples are the planned introduction of the United Kingdom National
Identity Card based on biometrics required by the Identity Cards Act 2006 [8], the rec-
ommendation by the International Civil Aviation Organization (ICAO) [9] to adopt the
ePassport that also includes biometric data, the implementation of the iris-based Privium
border control system in Schiphol Airport in the Netherlands [10], and the many imple-
mentationsin the financial sector such asin ATMsin Japan [11, 12] and payment systems
in Singapore [13], US[13], and Mexico [14].

The use of biometricslooks promising. Its wide-spread use, however, introduces new
security and privacy risks as will be discussed in Section 1.2. Mitigating these risks is
essential for obtaining the acceptance from the subjects of the biometric systems and
therefore facilitating the successful implementation on alarge-scale base. Methods to ad-
dress and mitigate these risks are the main topics of this thesis.

In the remainder of this chapter we first describe a general biometric verification sys-
tem and its performance measuresin more detail in Section 1.1, and follow with the secu-
rity and privacy risksin Section 1.2. Furthermore, in Section 1.3 we discussthe guidelines
and countermeasures to mitigate these risks. This thesis focuses on the countermeasure
known as template protection. We introduce the template protection scheme of interest
that is used throughout this thesis, namely the Helper Data System (HDS). We present
the research questions and discuss the corresponding contributions within this thesis in
Section 1.4. We conclude the chapter with the outline of this thesisin Section 1.5.

1.1 Biometric Verification Systems

As mentioned previously, biometricsis the field of uniquely and automatically recogniz-
ing or verifying humans based upon one or more intrinsic physiological or behavioral
traits. Desired properties of the biometric traits are [1, 15]:

* Universality, which implies that the trait should be existing for each subject,
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* Uniqueness, which means that the trait should be different for each subject within
the population,

* Permanence, which indicates that the trait remains constant with time,

* Collectability, which meansthat the trait can be measured quantitatively.

* Performance, which implies that a certain verification accuracy can be achieved
with specific resource requirements, and within working and environmental factors.

* Acceptability, which suggests the willingness for people to accept the biometric
system. Notethat any privacy or security risk of the biometric system left untreated
can affect its acceptability.

* Circumvention, which indicates the difficulty to spoof the system. Spoofing is the
act of fooling the system and obtai ning unauthorized access by means of fraudulent
techniques. Researchers have shown successful attacks on fingerprint recognition
systems by using fake fingerprints, for example by creating “gummy” fingerprints
or a wafer thin silicon dummy that can be glued on the finger [16, 17]. Results
at that time showed that these methods worked effectively on multiple fingerprint
sensors both for the scenarios where the fake fingerprint is created (i) with full co-
operation from the subject being impersonated, and (ii) from a latent fingerprint
without cooperation.

A biometric verification system consists of an enrolment and verification phase as por-
trayed in Figure 1.1. In the enrolment phase, the individual is presented to the biometric
system for the first time. One or more biometric samples are captured by a sensor. In
Figure 1.1 we show an example of a camera that captures depth information of the indi-
vidua's face, namely a 3D face image, as the biometric sample. Usually, the capturing
processis followed by the Feature Extraction module, where either a real-valued feature
vector (e.g. Gabor filter responses), a binary vector (e.g. iris code), or an unordered set
of values (e.g. minutiae set) is extracted from the biometric sample and stored as the ref-
erence template on a storage device. Examples of storage devices include tokens, smart
cards, and a central database. In the verification phase, a probe biometric sample is cap-
tured from the same biometric trait. The biometric sample is passed through the same
feature extraction process and compared with the stored reference template correspond-
ing to the individual’s claimed identity. The Comparator module returns a match if the
features extracted in the verification phase are similar to the reference template. In some
cases, the biometric sensor data are stored as the reference template, for example in the
form of a JPEG image. |In that case, the comparison process incorporates the feature
extraction process for both the reference as well as the probe sample.

Therearetwo types of comparisons, namely a comparison between biometric samples
of the same individual, which is referred to as a genuine comparison, and a comparison
between biometric samples of different individuals, which is referred to as an imposter
comparison. In general, the comparison process entails first the computation of a score
followed by a decision based on the score. There are two types of scores, namely a
similarity score and dissimilarity score, which tells you how similar and different the
two biometric samples are, respectively. The decision is made by means of a threshold
T. In case of a similarity (dissimilarity) score, a match is returned when the score is
larger (smaller) than the threshold 7. A match implies that the biometric samples from
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Figure 1.1: General biometric verification system where as an example a video camera
captures a 3D face image as the biometric sample.
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Figure 1.2: lllustration for the case of (a) similarity and (b) dissimilarity score with the
corresponding match and non-match region, and FMR and FNMR.

the enrolment and verification phase are believed to have been acquired from the same
individual, hence the claimed identity is considered to be genuine. On the other hand,
a non-match results in a reject of the claimed identity. An illustration of the similarity
and dissimilarity score with its corresponding match and non-match region is portrayed
in Figure 1.2(a) and Figure 1.2(b), respectively. The dashed-line density corresponds to
the scores obtained from imposter comparisons, while the solid-line density corresponds
to the scores obtained from genuine comparisons.

As classification performance indicators we use the false match rate (FMR, «) and
the false non-match rate (FNMR, ). The FMR is the rate of obtaining a match at im-
poster comparisons, while the FNMR is the rate of obtaining a non-match at genuine
comparisons.t In Figure 1.2, the FMR and FNMR are indicated by the red and blue

1The FMR and FNMR are performance measurements of the recognition algorithm specificaly and are
related to the false-acceptance rate (FAR) and false-rejection rate (FRR) at system level by combining the
FNMR and FMR with the failure to enrol (FTE) and failure to acquire (FTA) rates. The FTE is the rate of not
being able to create a reference template of sufficient quality in the enrolment phase, while the FTA isthe rate
of not acquiring a biometric sample and feature vector of sufficient quality in the verification phase.
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shaded aresas, respectively. Note that both the FMR and FNMR depend on the threshold

T'. Therefore, the threshold is aso referred to as the operating point of the biometric sys-

tem. The relationship between the FMR and FNMR at different operating points can be
illustrated by means of a detection error tradeoff (DET) or a receiver operating charac-

teristics (ROC) curve. Note that when changing the operating point, either the FMR or

FNMR decreases while the other increases, thus both the FMR and FNMR cannot be de-

creased or increased simultaneously. Single number performanceindicatorsthat are often

used are the equal-error rate (EER), which is achieved at the operating point 7' g g r Where
both FNMR(Tggr) and FMR(TggR) are equa, the FNMR achieved at atarget FMR or
the FMR achieved at atarget FNMR.

1.1.1 Fusion

As stated in [18], the basic principle of fusion is the reconciliation of evidence presented
by multiple sources of biometric information in order to enhance the classification per-
formance. Multiple sources of biometric information can be extracted from the same bio-
metric modality by (see Figure 1.3 for the case of fingerprints): (i) capturing a sample of
multiple instances (Ieft and right index fingerprint or iris) with the same sensor, (ii) using
different sensors to acquire a different type of biometric samples from the same instance,
(iit) capturing multiple samples using the same sensor and instance, and (iv) extracting
multiple feature representations of the same biometric sample using different algorithms.
These cases are referred to as the multi-instance, multi-sensor, multi-sample?, and multi-
algorithm systems, respectively. Further more, the fifth type is the multi-modal system,
which is the fusion of sources of biometric information from multiple modalities, for ex-
ample fingerprint, face, iris, voice, palm or retina. To complete the summary from [18],
the sixth type is referred to as the hybrid system, which consists of a combination of the
aforementioned fusion types. Each multi-biometric fusion type can be implemented at
feature-level, score-level, or decision-level of the biometric system.

1.2 Security and Privacy Risks

The storage and processing of biometric data, and the widespread use of biometric sys-
tems introduce various security and privacy risks. We would define a security risk as a
vulnerability of the system that facilitates an adversary to attack the system or increases
the adversary’s success rate of attacking the system. Privacy risks are related to vulner-
abilities in which the adversary extracts valuable information about the individuals that
use the biometric system and may not directly be related to increasing an adversary’s at-
tacking success rate. Mitigating these risks is essential to obtain the acceptance from the
subjects of the biometric systems and therefore facilitating the successfully implemented
on alarge-scale base. The security and privacy risks are:

i ldentity fraud, wherefor examplean adversary stealsthe stored referencetemplate
and impersonates the genuine subject of the system by some spoofing mechanism.

2Within 1SO [19], multi-sample fusion is referred to as multi-presentation.
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Figure 1.3: Multiple sources of biometric information using fingerprints as the single
modality.

ii Limited-renewability, implying the limited capability to renew a compromised
reference template due to the limited number of biometric instances, for example
we only have ten fingers, two irises or retinas, and a single face.

iii Cross-matching, linking referencetemplates of the sameindividual across databases
of different applications. With cross-matchingit is possible to track the presence of
an individual across multiple applications based on biometrics.

iv Leaking sensitive personal information, where it is known that biometric data
may revea the gender, ethnicity, or medical information such as the presence of
certain diseases [20-22].

For fingerprints, real-life examples exist of spoofing a biometric system based on unau-
thorized use of fingerprints[16, 17], thus allowing identity fraud. It was thought that stor-
ing the set of minutiae points extracted from the fingerprint image instead would solve
this problem, because the transformation was considered to be one-way. However, it has
been shown in [23, 24] that from the set of minutiae points an artificial fingerprint can be
created to spoof a minutiae-based fingerprint recognition system. Retrieving information
about the original biometric sample may thereforelead to the leakage of sensitive personal
information as indicated by the fourth risk, which is thus of a privacy nature.

The limited number of biometric instances makes it impossible to ‘endlessly’ renew
a compromised reference template. If one revokes a compromised template, the corre-
sponding biometric instance of the individual cannot be used within the biometric system
anymore. Hence, this creates a security risk, because a compromised template cannot be
revoked without disturbing the operational use of the system. This is a significant draw-
back compared to possession- or password-based authentication, where for example a
new credit card with a new serial number can be issued or a new password can be created
once they are compromised.

The limited number of biometric instances combined with the desired property of
permanency leads to the cross-matching risk, which is a privacy risk. Using the same bio-
metric instance of the same trait in multiple applications allows for verification whether
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an individual is enrolled in different application assuming the application databases to
be accessible. Again thisis a drawback compared to possession- or password-based au-
thentication, where for example different cards/tokens or usernames/passwords can be
used for each application, however with some convenience drawback of needing to carry
or remembering multiple cards/tokens or usernames/passwords, respectively. The cross-
matching possibility consequently introduces the undesired threat of function creep. An
example of function creep is the case that a database of biometric data is collected for a
specific purpose, for example independent performance testing of biometric recognition
systems, but is also used for another purpose without the consent of the participants, for
exampl e cross-matching the collected database with the criminal justice database contain-
ing biometric data related to unsolved crimes.

1.3 Protecting the Reference Template

Mitigating the privacy and security risks discussed in Section 1.2 isessential for biometric
systems, in order to be accepted by the subjects and, therefore, a prime condition to
successful large scal e deployment.

According to several laws and directives, biometric data is considered to be person-
ally identifiable information (PIl) and requires proper protection in terms of procedures
for handling the data and methods to prevent unauthorized use. 1SO guidelines [25] for
the proper protection of biometric datainclude the following requirementsfor stored bio-
metric data:

i Data minimization, referring to only collecting the necessary datafor the biomet-
ric verification as the reference templ ate.
ii Confidentiality, ensuring that the reference template is accessible only to those
authorized to have access.
iii Integrity, meaning that the reference template cannot be modified without autho-
rization.
iv Irreversibility, implyingthat it isimpossible or at least very difficult to retrieve the
original biometric sample from the reference template.
v Renewability, whereit is possible to create different reference templates when one
gets compromised.
vi Unlinkability, which guarantees that different and unlinkable reference templates
can be created for different applicationsin order to prevent cross-matching.

Reducing the stored reference template to information that is strictly required for verifica:
tion, for example by storing extracted features rather than the biometric sample, reduces
the risk of unauthorized use. The confidentiality guideline ensures that non-authorized
persons do not gain access to the reference template, thus limiting the privacy risks of
leaking personal information. Ensuring the integrity guarantees that an adversary is not
ableto modify the reference template in order to improve its success rate of attacking the
biometric system. Anillustration of theirreversibility property is shown in Figure 1.4(a).
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Figure 1.4: (@) Irreversible and (b) renewability/unlinkable property.

Given a biometric sample it is easy to create the protected template, but given the pro-
tected templateit isimpossible or at least difficult to retrieve the biometric sample. Peo-
ple may claim that biometrics are not secret [26], as your face or fingerprint can easily
be captured covertly, and therefore protecting them with an irreversibility property may
not make sense. However, new biometric traits such as hand vein or palm vein are much
more difficult to obtain covertly and their classification performance look very promis-
ing. Therefore, it is essential to protect the reference templates derived from these traits.
The renewability and unlinkability properties are illustrated in Figure 1.4(b). The subtle
difference between the renewability and unlinkability property is that for the renewability
property different reference templates need to be derived from the same biometric sample,
while the unlinkability property requires that these different templates cannot be linked
back to the same data subject. Fulfilling the unlinkability property inherently fulfills the
renewability property.

Some known countermeasures to safeguard the privacy and security by enforcing
some of the SO guidelines are

i The practice of data separation where the most privacy sensitive information is
stored on an individual smart card or token. This reduces the risk of security
breaches of centralized databases, and provides more control to the subject of the
biometric data and the processing thereof.

ii Theuseof dataminimization principles, such asfeature extraction techniques. For
example, store only the extracted minutiae set instead of the complete fingerprint
image.

iii Theuse of classical encryption techniques such as DES, AES, or RSA, to provide
confidentiality or integrity during storage and transmission of biometric data.

iv. The implementation of template protection techniques, to provide irreversibility,
renewability, and unlinkability.

Separating the privacy sensitive data across different storage devices increases the effort
for the adversary to collect all data. Furthermore, by storing the privacy sensitive data
on a storage device under the supervision of the subjects of the biometric system them-
selves, the subjects have more control of the use and processing of their biometric data
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and protecting their privacy therefore also includes their own responsibility.

Instead of separating the data, the risks could be mitigated by storing only the data
reguired for verification. For example, the use of feature extraction algorithmsthat extract
only the essential information for verification from the captured biometric sample, namely
storing the minutiae set instead of the fingerprint image.

With classical encryption schemes, the reference template would be encrypted before
being stored in the database and in the verification phase it would be decrypted prior to the
comparison process. Hence, the database consists of encrypted referencetemplatesandis
protected as long as the encryption key is kept secret. Confidentiality is achieved because
only the key holder has access to the content of the reference template. By using digital
signature schemes, the integrity of the reference template can be guaranteed. By using
a different key for each application the protected templates are renewable and unlink-
able when the keys are not compromised and therefore neutralizing the cross-matching
risk. However, the drawback of this encryption method is that the encrypted reference
templates have to be decrypted and are in the clear in the verification phase prior to the
comparison. Furthermore, if the encryption key gets compromised the whole database
could be decrypted, therefore the key has to be kept secret and requires a secure key in-
frastructure. Alternatively, comparison is performed on the encrypted domain [27-29].
However, these techniques are currently not sufficiently mature for wide-spread use in
applications.

Template protection techniques inherently protect the reference template without the
use of asingle encryption key or having the reference template decrypted and in the clear.
Template protection techniques mainly focus on implementing the irreversibility, renewa-
bility and unlinkability properties®. In the context of this thesis, a biometric reference
template that has the aforementioned properties is referred to as “protected template”.
Note that these properties have to be met while maintaining a similar classification per-
formance as for the case of the unprotected reference templates. The field of template
protection is relatively young, however there is a significant interest to successfully de-
velop and implement these techniques as shown by their prominent position within the
European projects 3DFace [30] and TURBINE (TrUsted Revocable Biometric IdeNti-
tiEs) [31] from the 6th and 7th Framework Programme, respectively, the great interest
from privacy offices such as the Office of the Information and Privacy Commissioner of
Ontario [32], and the current | SO standardization activities [25]. Thisthesis focuses only
on the template protection countermeasure.

1.3.1 Helper Data System (HDS)

In this section we briefly present the templ ate protection scheme being used in the remain-
der of this thesis, which is known as the Helper Data System (HDS). A more detailed
description of the HDS is provided in Section 2.3.1. An abstract overview of the HDS
scheme as used in [33-35] is portrayed in Figure 1.5 and consists of two main parts: (i)
Bit Extraction and (ii) Bit Protection part.

3The integrity and confidentiality property can easily be achieved by combining template protection tech-
niques with cryptographic techniques, and are therefore considered not to be part of template protection and out
of the scope of this thesis.
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Figure 1.5: Template protection scheme including a Bit Extraction module.

In the enrolment phase, first a real-valued feature vector is extracted from each ac-
quired enrolment sample by the Feature Extraction module. Hereafter, a single binary
vector is created from the multiple feature vectors, within the Bit Extraction Generator
module. The bit extraction scheme could be subject-specific in order to extract more ro-
bust bits, therefore some auxiliary data AD; containing the subject-specific information
has to be stored as part of the protected template for use in the verification phase. The
final step in the enrolment phase is the protection of the binary vector by the Bit Protec-
tion Generator module. The HDS is based on the key binding principle known as the
fuzzy commitment scheme (FCS) from Juels and Wattenberg (1998) [36]. It randomly
generates a key and binds it to the binary vector. The binding output is referred to as
the code-offset auxiliary data AD,. Furthermore, a pseudonymous identifier (PI) is de-
rived from the random key using cryptographic primitives and is considered as part of the
protected template. Concluding, the protected templateisthetriplet {AD, ADo, Pl}.

In the verification phase, the Feature extraction module extracts a real-valued feature
vector from each of the multiple acquired verification samples. Hereafter, the Bit Ex-
traction Reproduce module derives a single probe binary vector from the multiple feature
vectors with help of the stored auxiliary data AD; from the enrolment phase. The Bit
Protection Reproduce module extracts a candidate pseudonymous identifier Pl * from the
probe binary vector and the code-offset auxiliary data AD,. The Comparator module
compares both Pl and Pl * and returns a decision. A match is returned if Pl and Pl * are
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equal, which occurs only if the probe binary vector is similar to the enrolment binary
vector, otherwise a non-match is returned. In order to be robust against bit differences
between the enrolment and probe binary vector, error-correcting codes (ECC) are being
used.

1.3.2 Irreversibility, Renewability and Unlinkability Properties

In order to achieve the irreversibility property, given the protected template
{AD;,AD,, P} it should be difficult to retrieve information about the enrolment bio-
metric data, its extracted real-val ued feature vector, or the extracted binary feature vector.
Therefore, (i) the bit extraction auxiliary data AD; should ideally not leak information
about either the input real-val ued feature vector or the biometric data, (ii) the code-offset
auxiliary data AD- should preferably not leak information about the extracted binary vec-
tor or the random key, and (iii) the pseudonymous identifier Pl should ideally not leak
information about the randomly generated key, where the key size determines the diffi-
culty of reversing PI. Asthe type of leakage we consider whether the leaked information
is about the biometric samples, its extracted real-valued feature vector, or the extracted
binary feature vector. We express the amount of the information leakage by the degree
the adversary is able to increase the FMR at an impersonation attack. A greater increase
of the FMR would imply a greater information |eakage.

The renewability property is based on the possibility of creating many different pro-
tected templ ates given a biometric sample. The number of different keys that can be used
in the binding procedures determines the renewability property, hence the key size plays
another essential role.

The unlinkability property is stricter than the renewability property as it also
requires that the protected template of the first {ADy1,AD21,Pl;} and second
{AD;7 2,AD3 2, Pl } application should not be linkable. The protected template may leak
information that could be used for cross-matching. Hence, we express the amount of the
information leakage by the cross-matching performance between two protected templates,
which should be kept at a minimum in order to optimize the unlinkability property.

Concluding, there are two important attributes to study, namely (i) the key size, and
(i) the type and amount of information |eakage from the protected template affecting the
irreversibility or unlinkability property.

1.4 Research Questionsand Contributions
Asthetitle of the thesis suggests, the main research question is

What isthe performance of the helper datatemplate protection scheme (HDS)?
The term “performance” in this context is broad and includes the classification perfor-

mance and the effectiveness of the privacy and security protection of the HDS. The main
research question can be subdivided into four smaller and more specific questions.
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Given the helper data template protection scheme:

1 What isthe theoretical classification performance?

i How can we model the classification performance?
ii How do the system parameters influence it?
iii How does it compare with the classification performance without
template protection?

2 What isthemaximum key size at agiventarget classification performance
and system parameters?

3 How does the information leakage from the auxiliary data affect the
irreversibility and unlinkability property?

4 How can one realize fusion with protected templates and to what extent
can it improve the classification performance?

In the following sections we discuss the related work and our contributions for each
research question separately.

1.4.1 Theoretical Classification Performance

The irreversibility, renewability, and unlinkability properties of the template protection
technique, as discussed in Section 1.3, have to be achieved while maintaining a similar
classification performance as in the case of the unprotected reference templates. As will
be explained in Chapter 3, it can be shown that the classification performance of the HDS
is, given some limitations, identical to a Hamming-distance classifier operating on the bi-
nary feature vector. Furthermore, the classification performance for the unprotected case
is assumed to be of the real-valued feature vector prior to the bit extraction. Hence, it is
of importance to investigate the classification performance of the binary vectors, i.e. the
classification performance on the binary level, and compare it with the optimal classifica-
tion performance of the real-valued feature vectors, i.e. the classification performance on
the continuous level.

To enable the analysis, we model the extracted real-valued features as a source with
within-class and between-class Gaussian probability densities. The within-class density
model s the biometric variability and measurement noise, while the between-class models
the diversity of afeature across the whole population. The bit extraction scheme we con-
sider extracts a single bit per component using the mean of the between-class density as
the binarization threshold. We a so include the case where multiple enrolment and verifi-
cation samples are taken and we analyze their effect on the classification performance.

With the Gaussian source model and bit extraction scheme we analyticaly estimate
the theoretical classification performance of the template protection system in Chapter 3.
As the naive model, we assume the within-class variance of a component to be homoge-
neous across al subjects, i.e. equal for each subject of the population, and each feature
component to be independent. We validate the naive Gaussian analytical framework using
biometric data. The naive model does not fully describe the performance curve and thus
we adapt the model in order to incorporate the properties of hon-homogeneous within-
class variances and dependent feature components.



1.4. Research Questions and Contributions 13

We conclude Chapter 3 by comparing the theoretical classification performance on
binary level with the classification performance on continuouslevel, i.e. abinary classifier
versus continuous classifier performance comparison. As the continuous classifier we
considered the optimal likelihood ratio adapted from Veldhuis and Bazen (2005) [37] by
including the number of verification samples. With the comparison performance we can
judge the effect of the template protection scheme, mainly due to the bit extraction part,
on the classification performance.

142 Maximum Key Size

In Section 1.3.2 we outlined the influence of the size of the key on the irreversibility and
renewability property of the template protection system. By assuming the bits of the key
to be uniformly random and independent, the size of the key is indicative for its entropy.
Hence, the irreversibility and renewability property can be optimized by maximizing the
key size.

In Chapter 4 we analytically determine the maximum key size based on the naive
Gaussian framework presented in Chapter 3. Similar to the published work of Willems
and Ignatenko (2009) [38], we model the real-valued feature vectors as a Gaussian con-
tinuous source, which has a discriminating power equal to its Gaussian channel capacity.
The discriminating power is referred to as the input capacity. However, our approach
differs because we fix the input capacity and distribute the capacity among the feature
components. Furthermore, we assume the error-correcting capability of the ECC to be
equal to Shannon’s bound*.

With the analytical classification performance, determined in Chapter 3, we have the
relationship between the classification performance and the number of bits that have to
be corrected T', namely FNMR(T") and FMR(T"). In Chapter 4 we combine this rela-
tionship with Shannon’s theory, which stipulates the relationship between the key size
and the error-correcting capability, and therefore we obtain the relationship between the
performance and the key size. Furthermore, we a so investigate the influence of the sys-
tem parameters, which are the input capacity and the number of feature components, the
number of enrolment and verification samples, and the target FNMR or FMR, on the key
size. We extend the analysis by investigating the effect of distributing the input capacity
uniformly or non-uniformly among the feature components and we also include the case
where feature components are dependent.

1.4.3 Information Leakage of the Auxiliary Data

Our goal is to determine the information leakage of the auxiliary data {AD 1, AD,} about
the key, the enrolment real-val ued feature vector or binary vector affecting theirreversibil-
ity property, and to which extent can the auxiliary data be used for cross-matching, which
will affect the desired unlinkability property. We perform this analysis on the bit pro-
tection part (Chapter 5) and the bit extraction part (Chapter 6) of the HDS in Figure 1.5

Separately.

4In practice, ECCs cannot realize this bound and the results are therefore theoretical upper limits.
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Bit Protection Part (AD)

Recent publications showed that AD, could be used for cross-matching due to the linear
property of the ECC, known as the decodability attack in the literature [39, 40]. They
determined the theoretical FMR when comparing AD - of arbitrary protected templates
from different applications. In Chapter 5 we extend the analysis and also determine the
theoretical FNMR. We show that aslong asthe HDS is balanced, i.e. there are equal num-
ber of enrolment and verification samples, the cross-matching classification performance
is worse than the classification performance of the HDS. Besides the extended analysis,
we also provide a solution for the decodability attack based on randomization in order to
mitigate the cross-matching performance close to random.

Bit Extraction Part (AD;)

Firstly, we analyze the information leakage of the bit extraction auxiliary data AD ; of a
specific bit extraction scheme affecting the irreversibility property. Secondly, for several
bit extraction schemes we study the cross-matching performance of AD; affecting the
unlinkability property.

With respect to the irreversibility analysis, it has been shown in Ballard et a. (2008)
[41] that the bit extraction auxiliary datafrom certain schemes do indeed leak information
that could be exploited by an adversary to improve its impersonation success rate by in-
creasing the FMR. Thisinformation leakage affectsthe irreversibility property, becauseit
is easier to guess the feature representation of the biometric data due to the increase of the
FMR. We analyze the information leakage for the case of the Detection Rate Optimized
Bit Allocation (DROBA) bit extraction scheme proposedin Chen et al. (2009) [42], which
extracts multiple bits per feature component. We show with biometric datathat AD; a-
lows an adversary to increase the FMR by two orders of magnitude compared to the FMR
obtained without access to AD;. Furthermore, we analyze the cause of the information
leakage and provide a remedy which essentially requires the restriction of the allocation
freedom of the DROBA agorithm.

With respect to the unlinkability analysis, we study the cross-matching performance
of AD; affecting the unlinkability property for several bit extraction schemes. In the
literature, numerous bit extraction schemes have been proposed using subject-specific
information stored in AD; in order to extract more robust bits, i.e. bits with a smaller
bit-error probability [33-35, 42—-45]. We limit the scope of our analysis to the simple
binarization scheme, the reliable component selection (RCS) scheme [33-35], and the
DROBA scheme [42].

Firstly, we demonstrate that the use of subject-specific information can improve the
system classification performance. Secondly, we determine the cross-matching perfor-
mance of the bit extraction auxiliary dataand illustrate the difference between the system
and cross-matching performancewith respect to the number of enrolment and verification
samples. The results show that the more subject-specific information the bit extraction
uses, the greater its cross-matching performance will be. Having an unbalanced sys-
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tem where the number of enrolment samples is greater than the number of verification
samples can also cause the cross-matching performanceto be better than the system per-
formance. Thirdly, we show that reconstructing the bit allocation strategy from the veri-
fication samples, in order to prevent cross-matching, significantly deteriorates the system
performance. Fourthly, we investigate whether the system performance can be improved
by fusion of the system and the cross-matching performance.

1.4.4 Fusion

Fusion is the art of combining multiple sources of biometric information in order to im-
prove the classification performance. The HDS system only outputs a decision which
protects it against hill-climbing attacks, which are based on the availability of the score.
However, the drawback of not having a score is that it is not possible to apply fusion at
score-level. Therefore, published work on fusion with template protection are mainly fo-
cussed on fusion at feature-level or at decision-level [33, 34, 46-48]. However, we show
in Chapter 7 that by extending the Pl reconstruction process with the derivation of a dis-
similarity score, it is possible to apply fusion at score-level, given some limitations on
the match and non-match regions that can be created. Furthermore, we compare the fu-
sion classification performance at score-level with the one obtained at feature-level and
decision-level fusion. We will do this comparison for multi-sample and multi-algorithm
fusionin Section 7.2 and Section 7.3, respectively. From our results we observe that, de-
spite the aforementioned limitations of fusion at score-level, its classification performance
outperformsfusion at feature-level or decision-level for multi-algorithm fusion, while no
significant differences was found for multi-sample fusion.

1.5 Outlineof the Thesis

Chapter 2 provides an overview of proposed template protection schemes known in the
literature. We provide the advantages and disadvantages of the different types of template
protection schemes and compare them with the scheme of interest in this thesis, namely
the HDS scheme.

Chapter 3 answers the first research question of “ Given the helper data template pro-
tection scheme, what isthe theoretical classification performance?’. We determine the
theoretical classification performance of the HDS system assuming a Gaussian modeled
biometric source and a single bit extraction scheme. We conclude the chapter with the
comparison of the theoretical classification performance of the binary classifier, i.e. on
the binary vector level, and the continuous classifier, i.e. on the real-valued feature level.

Chapter 4 answers the second research question of “Given the helper data template
protection scheme, what is the maximum key size at a given target classification perfor-
mance and system parameters?’. With the theoretical classification performance of the
binary classifier determined in Chapter 3 and the assumption that the ECC operates on
Shannon’s bound, we compute the maximum key size and analyze the influence of the
system parameters, such as the discriminating power of the input Gaussian source and its
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number of feature components, the number of enrolment and verification samples, and
thetarget FNMR or the target FMR.

Chapter 5 and Chapter 6 combined answer the third research question of “Given the
helper data template protection scheme, how does the information leakage from the
auxiliary data affect the irreversibility and unlinkability property?’. The information
leakage from the auxiliary data of the HDS is performed in two parts, firstly the analysis
of the bit protection part (AD,) in Chapter 5 and secondly the analysis of the bit extraction
part (AD;) in Chapter 6. Chapter 5 investigates the cross-matching vulnerability, known
as the decodability attack, affecting the unlinkability property of the bit protection part.
Besides the analysis of the cross-matching performance we also propose a remedy based
on randomization. On the other hand, Chapter 6 discusses the information leakage of
the bit extraction part affecting both the irreversibility and unlinkability properties. We
identify and solve the information | eakage problem of the DROBA bit extraction scheme
and we aso investigate the relationship between the classification and cross-matching
performances of different bit extraction schemes.

Furthermore, in Chapter 7 we answer the fourth research question of “ Given the hel per
data template protection scheme, how can one realize fusion with protected templates
and to what extent can it improve the classification performance?’ We show that it is
possible to improve the classification performance by applying multi-samples and multi-
algorithm fusion at feature-, score-, and decision-level with the HDS template protection
system.

We conclude the thesis with Chapter 8, where we outline the contributions and the
answers to the research question of this thesis. We aso propose recommendations and
possible future directions.

It is noted to the reader that, as a consequence of integrating the full versions of the
published papersin this thesis, some parts of the chapters may contain some overlapping
content.



Chapter

Overview of Template Protection
Schemes

2.1 Introduction

As described in Jain et a. (2008) [49], the template protection schemes proposed in the
literature can be divided into two categories, namely (i) feature transformation and (ii)
biometric cryptosystems.

Template protection schemes based on feature transformation essentially transform
the enrolment biometric data using a transformation function in order to create the refer-
ence template. In order to protect the biometric data, the transformation should either be
non-invertible, difficult to invert, or the transformation function or its parameters should
be kept secret. In the verification phase, the same transformation is applied on the new
biometric data before comparison. It istheintention to use the same classifier for the com-
parison of the transformed biometric data as would have been on the original biometric
data

Biometric cryptosystems on the other hand protect the biometric sample by either ex-
tracting a key from it or binding akey to it. The same key has to be extracted from the
verification biometric sample or released from the reference template using the verifica-
tion sample, respectively. The entropy of the key determines the amount of protection
of the biometric data. Using the name cryptosystems may impose fal se expectations of
the use of keys with an entropy common in the field of cryptography, which is currently
advised by NIST to be at least 80 bits and will increase in 2011 to 112 bits [50]. Asis
known in the literature and as we will study in Chapter 4, the upperbound for the key size
expressed in bits equal to — log, (FMR). Because the range of the operating FMR of pub-
lished biometric performances are mainly in the order of 10 =3 — 10~ which correspond
to therange of 10-20 bits, we cannot expect effective key sizes closeto NIST requirements
of at least 80 hits. Therefore, we suggest to use the label key based protection instead of
biometric cryptosystems.

17



18 Chapter 2. Overview of Template Protection Schemes

Template Protection
/ Feature Transformation Key-Based Protection \

T’\:g:]‘;g‘r’;';lbgﬁ Salting Key Generation Key Binding
« Cancelable + BioHash « Fuzzy Extractors + Fuzzy Commitment
« BioConvolving « FaceHash + Secure Sketches «Fuzzy Vault
* PalmHash *Helper Data System
« Code-offset
*Quant. Index Modul.

\

Figure 2.1: Overview of template protection techniques (adapted from Jain et al. (2008)
[49]).

An overview of the template protection techniques adapted from Jain et a. (2008) [49]
isportrayed in Figure 2.1. In the following sections we discuss the feature transformation
and key-based templ ate protection schemes in more detail .

2.2 Feature Transformation

As mentioned above, feature transformation schemes transform both the enrolment and
verification biometric data using a transformation function and it is the intention to use
the same classifier for the comparison of the transformed biometric data as would have
been on the original biometric data. The transformation can be non-invertible, difficult
to invert, or easy to invert. If the transformation is easy to invert, the transformation
parameters have to be kept secret or depend on an external input such as a key, password,
or PIN in order to protect the reference templates. The transformation schemes where the
transformation parameters have to be kept secret are referred to as salting schemes and
the schemes where the transformation is non-invertible or difficult to invert are labelled
as the non-invertible transformation schemes.

2.2.1 Salting

For feature transformation schemes based on salting (see Figure 2.2), the transformation
parameters have to be kept secret because the transformation itself is reversible to a cer-
tain extend. Examples of such schemes are the following. The work of Teoh and Ngo
(2005) [51] proposes FaceHash in which the features extracted from the face are trans-
formed depending on a random number from a token. Teoh et al. (2006) [52] introduces
BioHash, which employsarandom multispace quantization based on external input on the
features extracted from face images, with similar implementation on iris [53] and palm-
prints named PalmHashing [54], or the work from Ong et al. (2008) [55] using dynamic
guantization transformation on features extracted from fingerprints. Both the work of Fa-
rooq et al. (2007) [56] and of Lee and Kim (2010) [57] use akey or PIN from the subject



2.2. Feature Transformation 19

Enrolment K ey/Password/PIN
l Proterted
Feat Feat
Extraction ]—’Eransfor%%ﬁioa—’@

4
A:\ Feature
// (\ ’l Extraction I ’ll ransformatioJ ’l Comparatorl >
Q0

Decision

Verification Key/Password/PIN

Figure 2.2: General depiction of atemplate protection scheme based on salting. Note that
the randomness and protection of the feature transformation depends on the external input
of either a key, password, or PIN from the subjects.

in order to randomizethe binary string extracted from minutiae points from fingerprints.

The renewability property is based on the existence of a great number of different
transformations. Theirreversibility and unlinkability property are based on the secrecy of
the transformation parameters.

Because the transformati on parameters derived from a password, key or PIN provided
by the subjects and are considered to be secret, the classification performance results of
most of the published papers from above show that the performance of the protected tem-
plates are significantly better than the performance of the unprotected templates. Note
that the performance improvements is mainly due to the fact that the classification per-
formanceis actually based on a multi-factor authentication setup of biometrics combined
with either possession or knowledge entities. Therefore, most of the mentioned work
also provide the performance for the scenario in which the transformation parameters are
no longer considered to be secret. For this scenario the performance will depend on the
biometric instance only. Hence, due to the multi-factor authentication approach, caution
has to be taken when comparing the classification performance obtained with template
protection schemes based on salting with the other types of template protection schemes.

2.2.2 Non-Invertible Transfor mation Schemes

A general depiction of the non-invertibletransformationis shown in Figure 2.3. The most
common technique based on non-invertible transformationsis known as Cancelable Bio-
metrics and was first introduced by Ratha et al. (2001) [58]. The main difference between
cancelable biometrics and salting is the use of a non-invertible transformation that does
not necessarily need an external input and due to the non-invertible property it is impos-
sible to abtain the original biometric sample from the reference template. Note that the
non-invertible transformation can also be applied on the biometric sample itself, such as
aface or fingerprint image, without the need to extract a feature vector first. Some non-
invertible transformations adapted from Ratha et al. [59] are portrayed in Figure 2.4. In
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Figure 2.3: General depiction of a template protection scheme based on non-invertible
transformation without use of an external input as for the case of salting in Figure 2.2.

case of the Cartesian transformation of Figure 2.4(a) the 2D feature space of for example
aminutiae point cloud is divided into smaller squares which are shuffled by the transfor-
mation. Non-invertibility is achieved by merging several squares into a single one. For
the polar transformation Figure 2.4(b), radial and angular sectors are created instead of
squares and shuffled by the transformation. Similarly, non-invertibility is achieved by
merging multiple sectors. The third transformation type is the functional transformation
such as the folding transformation shown in Figure 2.4(c) or the morphing transformation
shown in Figure 2.4(d). Another cancelable approach specifically for biometrics whose
template can be represented by aset of sequencesisknown as BioConvolving proposed by
Maioranaet a. (2010) [47]. The sequenceis chopped into multiple parts of equal length,
from which the convolution is taken of a number of randomly selected parts. Some other
work focussed on obtaining registration free cancelable template from the minutiae set
are Chikkerur et al. 2009 [60] and Yang et al. (2010) [61]. The work of Bringer et
al. (2009) [62] propose a method to create cancelable templates that are time-dependent.
Cancelable transformation can also be applied on the binary vector extracted from the
biometric sample as has been shown in Zuo et al. (2008) [63] for irisimages. The binary
vector is divided into several smaller binary vectors and the XOR and XNOR operation
is taken on randomly selected pairs creating a new and protected binary vector.

The renewability property is based on the existence of a great number of different
transformations. The irreversibility and unlinkability property are based on the non-
invertibility of transformation. The main drawback of the cancelable approach is the
fact that the classification performanceis reduced as can be seen in [47, 59, 62].

2.3 Key-Based Protection

As previously mentioned, there are two types of key-based template protection schemes,
namely (i) schemes that bind a key to the biometric data in the enrolment phase and
subsequently releases the same key from the reference template with use of the biometric
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(c) Functional (d) Functional

Figure 2.4: Examplesof cancelabletransformationsadapted from Rathaet al. (2007) [59],
namely (a) Carthesian, (b) polar and (c-d) functiona transformations. Printed with the
permission of the publisher, © 2007 |EEE.

datain the verification phase, and (ii) schemesthat extract akey from the biometric datain
the enrolment phase that has to be reproduced from the biometric data in the verification
phase.

2.3.1 KeyBinding

A genera description of the key binding and release template protection technique is
depicted in Figure 2.5. The principle ideais to bind or embed an arbitrary key with the
biometric in the enrolment phase such that the protected template in the ideal case does
not reveal any information from the enrolment biometric data. In the verification phase,
the key can be released by combining the protected template with a newly captured probe
biometric sample.

Examples of known key binding and release implementations are the Code-Offset
Construction [40,64,65], Fuzzy Commitment Scheme (FCS) [36,66—71], the Helper Data
System (HDS) [33-35, 72, 73], Quantization Index Modulation (QIM) [48,74,75], and the
Fuzzy Vault [46, 76-86]. The first three schemes are related to each other as portrayed in
Figure 2.6.

The code-offset construction is common in both the FCS and HDS. In the enrol-
ment phase, the code-offset construction consists of the random generation of the key
K € {0,1}* in the Random Number Generator module, the encoding of the key to a
codeword C € {0, 1} from the codebook C by the ECC Encoder module, and the XOR
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Figure 2.5: General depiction of the key binding and release template protection tech-
nique.

Enrollment Verification

—— Helper Data System

{£, R
Z AD; S AD;
Bit
Extraction

I: 512_

i [ RNG ]TK—’[ ecc | < ¢ AD-] S | AP
| EncoderJ \ %

| # Code-Offset

I Pl PI
I Hash
I

| Decision
L——- Fuzzy Commitment = — — — — — " — — — — — — — — — — — —

Figure 2.6: Key binding schemes.

operation of the codeword with the biometric binary vector f cresting the code-offset
auxiliary data AD,. The XOR operation can be considered to be similar to a one-time-
pad encryption algorithm. In the verification phase, the new biometric binary vector f
is XORed with AD- resulting into the possibly corrupted codeword C* = AD, @ ¥ =
Ca (f§ @ f3) = C @ e, wherethe Hamming distance e = du (f§, f) = ||e|| indicates
the number of errors corrupting the codeword C. Decoding C * by the ECC Decoder
moduleleads to the candidate key K *. Note that the ECC enables the scheme to be robust
against bit differences between binary vector from the enrolment and verification phase
induced by measurement noise or biometric variability. The candidate key K * is equal to
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the enrolment key only if the number of bit errors € is smaller than the error correcting
capability of the ECC indicated by ¢.. Theirreversibility is based on the fact that given
AD; there are 2% possibilities of £5. Similarly, the renewability property is based on the
fact that given afg there are 2*< different AD». The unlinkability property is based on the
fact that the 2% different AD, cannot be linked. Hence, the size of the key is indicative
for the irreversibility, renewability and unlinkability properties of the template protection
scheme.

With the code-offset construction only it is not possible to determine whether the
candidate key K* from the verification phase is equal to the enrolment key. Thisis made
possible with the FCS, which is the extension of the code-offset construction by hashing
the key into the pseudonymousidentifier (Pl) and storing both Pl and AD , asthe protected
template. Inthe verification phase the candidate key K * ishashed into PI *. The candidate
and enrolment key are equal if the two hashes Pl and Pl * are equal and the decision of
the Bit Comparator will be a match, otherwise a non-match. Storing the hash of the key
adds an additional requirement for the irreversibility property, namely that it should be
impossible or at least difficult to derive the key from its hashed version. As described in
Juels and Wattenberg (1998) [36], £ is equivalent to the witness that is used to commit
the codeword C by means of the XOR operation. The outcome of the commitment isthe
AD- and PI pair, which together is a so known as the blob. To successfully decommit the
blob, anew witness £ hasto be provided that iswithin ¢ bit differencesfrom the original
witness .

The HDS extends the FCS with a Bit Extraction module in order to convert the real-
valued feature vectors into a binary string that can be used within the FCS. The bit ex-
traction module can use subject-specific information, which is stored as the bit extraction
auxiliary data AD;. An additional requirement for the HDS is that AD; should not leak
much information about the biometric data possibly affecting the irreversibility, renewa-
bility, and unlinkability properties.

A common requirement of the code-offset construction, HDS, and FCS schemes is
that the input feature vector has to be of fixed length and ordered. The main differences
between these schemes observed in the literature is the use of different ECC codes or
different bit extraction schemes. Examples of different ECCs include the use of BCH
codes in Tuyls et al. (2005) [35], concatenated codes such as a Reed-Solomon and
Hadamard code in Hao et al. (2006) [66], maximum likelihood decoder in Chang and
Roy (2007) [65], or product codes in Bringer et a. (2008) [71]. One of the first papers
using ECC is Davida et a. (1998) [87]. Examples of different bit extraction schemes
include the reliable component selection (RCS) method in Tuyls et a. (2005) [35], or the
multi-bits extraction schemes such as the subject specific quantizer presented in Chang
et al. (2004) [44] or the detection rate optimized bit allocation (DROBA) in Chen et al.
(2009) [42].

QIM schemes protect the biometric data by introducing ambiguity into the bit extrac-
tion scheme cf. [48, 74, 75]. In the case when a single bit is extracted from a component,
the single dimension feature space is divided into equidistant quantization binswith alter-
nating bit values of either ‘0’ or ‘1’. The ambiguity isintroduced by having multiple bins
with the same bit value. Increasing the number of bins with the same bit value increases
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the ambiguity and the protection capability. The auxiliary data indicates the distance of
the biometric sample with respect to the middle of the closest quantization bin with a bit
value corresponding to the key. The same shift is applied on the verification sample before
guantization. By increasing the quantization bins, the bit error probability will decrease,
but on the other hand the ambiguity will also decrease. If the ambiguity decreases the
protection capability also decreases.

Fuzzy vault schemes lock the key within the vault which can only be opened with
another biometric sample that is similar to the enrolment sample. A common implemen-
tation of the fuzzy vault is shown in Figure 2.7. In the enrolment phase, first a polynomial
function is created using the key. The biometric data, for example the x or i coordinates
of minutiae points, are then projected on the polynomial as indicated by circles. In order
to protect the biometric data, many random points referred to as chaff points (squares) are
added in the space. The fuzzy vault or the protected template is thus the set of minutiae
coordinates, their polynomial projection and the chaff points. In the verification phase,
using the newly acquired probe biometric data, the closest points from the fuzzy vault to
the biometric data are selected using a filtering mechanism. From these selected points,
the same polynomial function is attempted to be reconstructed, leading to the same key.
The vault is said to be unlocked if the same enrolment key has been recovered. Note that
dueto this approach thereis no strict requirement to have afixed length or ordered feature
vector. It sufficesto select enough points from the vault that would recover the same poly-
nomial function and therefore the same key if there is a sufficient match. Therefore, the
fuzzy vault is quite popular when extracting minutiae points from fingerprints, because
the number of extracted minutiae points can vary significantly. Because the biometric
datais actually stored in the clear but combined with chaff points, the protection of the
fuzzy vault is thus based on the obfuscation of the biometric data by the chaff points.
There is a tradeoff between the number of chaff points, the protection capability and the
key recovery rate. For more detail about the fuzzy vault and itsimplementation we would
refer the reader to the many published papers [46, 76-86].

For the key binding schemes, the irreversibility property is based on the difficulty
of determining the key or biometric data from the output of the binding process. The
renewability is based on the number of different keysthat can be used in the binding pro-
cess, while the unlinkability property requires that the binding output with different keys
are not linkable.

Multiple key binding schemes can also be merged as shown in Nagar et al. (2008) [88]
where they combined the fuzzy vault scheme with the fuzzy commitment scheme. The
combination of the fuzzy commitment scheme and cancelable biometrics is shown in
Bringer er a. (2008) [89].

2.3.2 Key Generation

The two commonly known key generation methods are the Secure Sketch and Fuzzy Ex-
tractor.
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Figure 2.7: An example of the construction of afuzzy vault.
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Figure 2.8: Depiction of the secure sketch.
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Figure 2.9: Depiction of the fuzzy extractor.

Asdescribed in Dodis et al. (2004) [64], Secure Sketch is defined asfollows. Thereis
apair of procedures, namely (i) the sketch procedurethat receivesthe enrolment biometric
data f¢ as input and outputs the public data P as the protected template, which does not



26 Chapter 2. Overview of Template Protection Schemes

Protected

Template

Secure Sketch

Generate ]—)@

Z= v :

fﬁ’x\\ Foature f [Secure Sketen) £ Key Extractor K
k ! Extraction “|__ Recover d

\

Verification

Figure 2.10: Depiction of afuzzy extractor based on a secure sketch.

reveal too much information about f ©, and (ii) the recover procedurewhich reconstructsf ¢
when the verification biometric sample £V is similar enough with respect to f©. Because of
the ability of reconstructing f© it can be used asthekey. A depiction of the secure sketchis
shownin Figure2.8. Examples of published papers based on secure sketch are[65,90,91].

Note that a secure sketch can be created by using the code-offset construction presented

in Section 2.3.1. By taking the XOR of the candidate codeword C * and the auxiliary data
AD, we obtain the enrolment binary vector £ if and only if there is a match, namely
when C = C*.

A Fuzzy Extractor consists of a generate and reproduce procedure. Given the en-
rolment biometric data, the generate procedure outputs the public data P as the protected
template and akey K. Given the verification biometric dataand the protected template P,
the reproduce procedure outputs the same key K if the enrolment and verification samples
aresimilar. A depiction of the fuzzy extractor is shown in Figure 2.9. Essentially, afuzzy
extractor can be created by combining a secure sketch with a key extractor that extracts
a key with bits being close to uniformly random and independent. Examples of fuzzy
extractors are given in [92-94]. The main difference between the fuzzy extractor and the
secure sketch is the emphasis of the fuzzy extractor to extract a key with bits being close
to uniformly random and independent, while the key properties within the secure sketch
depend on the properties of the enrolment feature vector f ©.

The irreversibility property is based on the difficulty of extracting information about
the biometric data from the public data P. The renewability and unlinkability property
are based on the capability of creating many different public data P that cannot be linked
to the corresponding subject.
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3.1 Chapter Introduction

In this chapter the first research question will be addressed, namely

Given the HDS template protection scheme: What isthe theoretical classi-
fication performance, and how do the system parametersinfluenceit?

In the first part, Section 3.2, we analytically determine the theoretical classification per-
formance of the HDS by assuming the extracted feature vectorsto be modelled by a Gaus-
sian source and considering a single bit extraction scheme based on a single quantization
threshold. The effect of the system parameters such as the number enrolment and verifi-
cation samplesisincluded in the analysis. The main results are published in Kelkboom et
al. (2010) [95]%, which also includes the validation of the analysis using fingerprint and
3D face images.

In the second part, Section 3.3, we comparethe classification performance of the HDS
with the performance of the unprotected case. The HDS performanceis equivalent to the
classification performance on the binary level, while the performance for the unprotected
case is equivalent to the performance on the continuous level. We consider the optimal
likelihood ratio classifier as the continuous classifier. The main results are published in
Kelkboom et al. (2010) [96] 2.

1E. J. C. Kelkboom, G. Garcia Molina, J. Breebaart, R. N. J. Veldhuis, T. A. M. Kevenaar, and W. Jonker,
“Binary biometrics: An analytic framework to estimate the performance curves under gaussian assumption,” in
IEEE Transactions on Systems, Man and Cybernetics Part A, Special Issue on Advances in Biometrics: Theory,
Applications and Systems, vol. 40, no. 3, pp. 555-571, May 2010.

2E. J. C. Kelkboom, R. N. J. Veldhuis, and J. Breebaart, “ Classification performance comparison of a con-
tinuous and binary classifier under gaussian assumption,” in The 31st Symposium on Information Theory in the
Benelux, 2010, pp. 129 - 136.
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3.2 Binary Biometrics. An Analytic Framework to Es-
timate the Performance Curves under Gaussian As-
sumption

3.2.1 Abstract

In recent years the protection of biometric data has gained increased interest from the sci-
entific community. Methods such as the fuzzy commitment scheme, helper data system,
fuzzy extractors, fuzzy vault and cancel able biometrics have been proposed for protecting
biometric data. Most of these methods use cryptographic primitives or error-correcting
codes (ECC) and use a binary representation of the real-valued biometric data. Hence, the
difference between two biometric samplesis given by the Hamming distance or bit errors
between the binary vectors obtained from the enrollment and verification phases respec-
tively. If the Hamming distance is smaller (larger) than the decision threshold, then the
subject isaccepted (rejected) as genuine. Because of the use of ECCs, thisdecision thresh-
oldislimited to the maximum error-correcting capacity of the code, consequently limiting
the false rejection rate (FRR) and false acceptance rate (FAR) trade-off. A method to im-
prove the FRR consists in using multiple biometric samples in either the enrollment or
verification phase. The noise is suppressed, hence reducing the number of bit errors and
decreasing the Hamming distance. In practice, the number of samplesisempirically cho-
sen without fully considering its fundamental impact. In thiswork, we present a Gaussian
analytical framework for estimating the performance of a binary biometric system given
the number of samples being used in the enrollment and the verification phase. The error
detection trade-off (DET) curve that combines the false acceptance and false rejection
rates is estimated to assess the system performance. The analytic expressions are vali-
dated using the FRGC v2 and FV C2000 biometric databases.

3.2.2 Introduction

With theincreased popularity of biometricsand its applicationin society, privacy concerns
arebeing raised by privacy protection watchdogs. This has stimulated research into meth-
ods for protecting the biometric data in order to mitigate these privacy concerns. Numer-
ous methods such as the fuzzy commitment scheme [36], helper data system [33, 34, 49],
fuzzy extractors [64,65], fuzzy vault [80,84] and cancelable biometrics [58] have been pro-
posed for transforming the biometric data in such a way that the privacy is safeguarded.
Several of these privacy or template protection techniques use some cryptographic prim-
itives (e.g. hash functions) or error-correcting codes (ECC). Therefore they use a binary
representation of the biometric data, referred to as the binary vector. The transition from
real-valued to binary representation of the biometric allows the difference between two
biometric samples to be quantified by the Hamming distance (HD), i.e. the number of
different bits (bit errors) between two binary vectors.

Eventually the biometric system hasto verify the claimed identity of a subject. If ver-
ified, thisidentity is considered as genuine. The decision of either rejecting or accepting
the subject as genuine depends on whether the Hamming distance is larger than a prede-
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termined decision threshold (7°). In template protection systems that use an ECC, T' is
usually determined by its error-correcting capacity. Hence, the false rejection rate (FRR)
depends on the number of genuine matches that produce a Hamming distance larger than
the decision threshold.

Attackers may attempt to gain access by impersonating a genuine subject. The associ-
ated comparisons are referred to as the imposter comparisons and will be accepted if the
Hamming distance is smaller or equal to 7", thus leading to a false accept. The success
rate of impersonation attacks is quantified by the fal se acceptance rate (FAR).

Therefore, the performance of a biometric system can be expressed by its FAR and
FRR, which depends on the genuine (¢4.) and imposter (¢;,) Hamming distance prob-
ability mass functions (pmf) and the decision threshold 7'. A graphical representation is
givenin Figure 3.1.

One of the problemswith template protection systems based on ECCsisthat the FRR
is lower bounded by the error-correcting capacity of the ECC. A large FRR makes the
biometric system inconvenient, because many genuine subjects will be wrongly rejected.
In some practical cases[33,34] high FRR values were obtained because it wasimpossible
to further increase the decision boundary, since the used ECC was unabl e to correct more
bits. The method they used to improve the FRR consists in using multiple biometric
samplesin order to suppress the noise and thus reducing the number of bit errorsresulting
in asmaller Hamming distance.

The main objective of this study is to analytically estimate, under the Gaussian as-
sumption, the performance of a biometric system based on binary vectors under Ham-
ming distance comparison and considering the use of multiple biometric samples. We
present aframework for analytically estimating both the genuine and imposter Hamming
distance pmfs from the analytically estimated bit-error probability presented in [97] un-
der the assumption that both the wihin- and between-class of the real-valued features are
Gaussian distributed. Firstly, dueto the central limit theorem we can assume that the real -
valued features will tend to approximate a Gaussian distribution when they result from
alinear combinations of many components, e.g. feature extraction techniques based on
the principle component analysis (PCA) or linear discriminant analysis (LDA). PCA or
LDA techniques are often being used to perform dimension reduction in order to prevent
overfitting or to simplify the classifier [98], and in the field of template protection PCA
is also used to decorrelate the features in order to guarantee uniformly distributed keys
extracted from the biometric sample [65]. Secondly, the Gaussian assumption makes it
possible to obtain an analytical closed-form expression for the Hamming distance pmf.

This paper is organized as follows. In Section 3.2.3 we present a general description
of a biometric system with template protection and model each processing component.
We present the Gaussian model assumption describing the probability density function
(pdf) of the real-valued biometric features extracted from the biometric sample, the bi-
narization method under consideration, and the interpretation of the template protection
block. Then, we present the analytic expression for estimating the genuine and imposter
Hamming distance pmfs, and the FRR and FAR curvesin Section 3.2.4. In Section 3.2.5
we validate these analytic expressions with two different real biometric databases namely,
the FRGC v2 3D face images[99] and the FV C2000 fingerprint images [100]. We further
extend the framework in Section 3.2.6 and 3.2.7 in order to relax the assumptions madein
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Figure 3.2: A general scheme of a biometric system with template protection based on
helper data.

Section 3.2.3. Furthermore, some practical considerations are discussed in Section 3.2.8.
Section 3.2.9 concludes this paper and outlines the future work.

3.2.3 Modeling of a Biometric System with Template Protection

A general scheme of a biometric system with template protection based on helper datais
showninFigure 3.2. Inthe enrollment phase a biometric sample, for examplea 3D shape
image of the face of the subject, is obtained by the acquisition system and presented to the
Feature-Extraction module. The biometric sample is preprocessed (enhancement, align-
ment, etc.) and areal-valued feature vector f§; € RVF jsextracted, where Ny isthe num-
ber of feature components or dimension of the feature vector. In the Bit-Extraction mod-
ule, abinary vector £§ € {0, 1}V® is extracted from the real-val ued feature vector, where
N3 is the number of bits and in general does not need to be equal to Ny. Quantization
schemes range from simple, extracting asingle bit out of each feature component [33, 34]
to more complex, extracting multiple bits per feature component [44, 101]. Hereafter,
the binary vector is protected within the Bit-Protection module. The Bit-Protection mod-
ule safeguards the privacy of the subjects of the biometric system by enabling accurate
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comparisons without the need to store the original biometric data f or f5. We focus on
the helper data system that is based on ECCs and cryptographic primitives, for example
hash functions. A unique but renewable key is generated for each subject and kept secret
by using a hash function. Robustness to measurement noise and biometric variability is
achieved by effectively using error-correcting codes. The output is a pseudonymousiden-
tifier (P1), represented as a binary vector, accompanied by some auxiliary dataal so known
as helper data (AD) [102]. Finally, Pl and AD have to be stored for use in the verification
phase.

In the verification phase, another live biometric measurement is acquired from which
its real-valued feature vector f is extracted followed by the quantization process, which
produces the binary vector f3. In the Bit-Protection module a candidate pseudonymous
identifier PI* is created using AD and the binary vector . There is an exact match
between Pl and PI* when the same AD is presented together with a biometric sample
with similar characteristics as the one presented in the enrollment phase. In a classical
biometric system, the comparator bases its decision on the similarity or distance between
the feature vectors f; and f. For abinary biometric system, the decision is based on the
difference between £ and £}, which can be quantified using the Hamming distance. For
atemplate protection system, there is an acceptance only when Pl and Pl * are identical.

In summary, the biometric system incorporating template protection can be divided
into three blocks; (i) the Acquisition and Feature-Extraction modules where the input
is the subject’s biometric and the output is a real-valued feature vector fr € RN, (ii)
the Bit-Extraction module that extracts a binary vector fg out of fg, and (iii) the Bit-
Protection and Bit-Matching modules which protects the binary vector and performs the
matching and decision making based on Pl and Pl *. To build an analytical framework,
we have to model each block. In this Section we present a simple model for each block.
However, the simple model incorporating the Acquisition and Feature-Extraction block is
built under strong assumptions and will be relaxed later in the paper.

Acquisition and Feature-Extraction Block

The input of the Acquisition and Feature-Extraction block is a captured bio-
metric sample of the subject and the output is a rea-valued feature vector
fr = [fr[l], fr[2],-.., fr[Nr]]’ of dimension Ny, where*‘ ’ ' is the transpose oper-
ator. The feature vector fy is likely to be different between two measurements, even if
they are acquired immediately after each other. Causes for this difference include sensor
noise, environment conditions (e.g. illumination) and biometric variabilities (e.g. pose or
expression).

To model these variahilities, we consider Parallel Gaussian Channels (PGC) as por-
trayed in Figure 3.3. We assume an ideal Acquisition and Feature-Extraction module
which always produces the same feature vector p, for subject i. Such ideal moduleisthus
robust against all aforementioned variabilities. However, the variability of component j is
model ed as an additive zero-mean Gaussian noise w|j] withitspdf p.(j.; ~ N(0, 02 ;[4]).
Adding the noise w(;] with the mean p;[;] resultsinto the noisy feature component fr[7],
in vector notation fr = p; + w. The observed variability within one subject is character-
ized by the variance of the within-class pdf and is referred to as within-class variability.
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Figure 3.3: The Parallel Gaussian Channel for both the enrollment and verification phase.

We assume that each subject has the same within-class variance, i.e. homogeneouswithin-
class variance o}, ;5] = o2 j], Vi. For each component, the within-class variance can be
different and we assume the noise to be independent.

On the other hand, each subject should have a unique mean in order to be distinguish-
able. Acrossthe population we assume (;[5] to be another Gaussian random variable with
density py,(j; ~ N (un[j], o[4]). Thevariability of 11;[;] across the population is referred
to as the between-class variability. Figure 3.4 shows an example of the within-class and
between-class pdfs for a specific component and a given subject. The total pdf describes
the observed real-val ued feature value £ [j] across the whole population and is al so Gaus-
sian with pyjj) ~ N (i), o2 7]), where pi[j] = pylj] and o2[j] = o2[j] + o2[j]. For
simplicity but without loss of generality we consider u+[j] = ub[j] = 0.

Asdepicted in Figure 3.3, in both the enrollment and verification phase the PGC adds
random noise w* and w" with the same probability density to w;, resulting in f§ and £,
respectively. Thus p; is sent twice over the same Gaussian channel.

Bit-Extraction Block

The function of the Bit-Extraction block is to extract a binary representation from the
real-valued representation of the biometric sample. As the bit extraction method, we use
the thresholding version used in [33,34], where asingle bit is extracted from each feature
component. Hence, the obtained binary vector f € {0, 1}F has the same dimension as
fr. Furthermore, the binarization threshold for each component §[;] is set equal to the
mean of the between-class pdf p[j]; if the value of fr[j] is smaller than §[j] then it is
set to “0” otherwiseit is set to “1”, see Figure 3.4. More complex binarization schemes
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Figure 3.5: Fuzzy commitment scheme.

could be used [44, 101], but the simple binarization is used more frequently. Therefore,
we only focus on the single bit binarization method. Note that the binarization method is
similar in both the enrolIment and verification phase. In the case where multiple biometric
samples are used in either the enrollment (V,) or verification (V) phase, the average of
all the corresponding fy istaken prior to the binarization process.

Bit-Protection and Bit-Compar ator Block

Many bit protection or template protection schemes are based on the capability of gener-
ating a robust binary vector or key out of different biometric measurements of the same
subject. However, the binary input vector f itself cannot be used as the key becauseit is
most likely not exactly the same in both the enrollment and verification phase (f§ # f3%),
due to measurement noise and biometric variability that lead to bit errors. The number
of bit errors is also referred to as the Hamming distance d (f, fy;). Therefore, error-
correcting codes are used to deal with these bit errors. A possible way of integrating an
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ECC isshownin Figure 3.5, which isaso known as the fuzzy commitment scheme [36].

In the enrollment phase, a binary secret or message vector K is randomly generated
by the Random-Number-Generator (RNG) module. The security level of the system is
higher at larger secret lengths. A codeword C of an error-correcting code is obtained by
encoding K in the ECC-Encoder module. The codeword is XOR-ed with f§ in order to
obtain the auxiliary data AD. Furthermore, the hash of K is taken in order to obtain the
pseudonymousidentifier Pl. For the sake of coherence we use the terminology proposed
in[102,103].

In the verification phase, the possibly corrupted codeword C * is created by XOR-ing
£y with AD. The candidate secret K* is obtained by decoding C* in the ECC-Decoder
module. We compute the candidate pseudonymous identifier Pl * by hashing K*. The
decision in the Bit-Comparator block is based on whether Pl and Pl * are bitwiseidentical .

In order to illustrate our framework with practical parameter values, we choose the
linear block type Bose, Ray- Chaudhuri, Hocquenghem (BCH) encoder/decoder as an
example ECC. While more sophisticated ECCs can be used, the BCH accommodates our
framework due to its Hamming distance classifier property. For example if we would
consider the binary symbol based Reed-Solomon code, the number of bits it can correct
depends on the error pattern. Hence, their probabilistic decoding behavior aso needs
to be modelled which is out of the scope of the framework described in this paper. The
ECC is specified by the codeword length (n ), message length (k.), and the corresponding
number of bits that can be corrected (¢ ), in short [n, k., t.]. Because the BCH ECC can
correct random bit errors, the Bit-Protection moduleyields equivalent Pl and Pl * whenthe
number of bit errors between the binary vectors £ § and £ is smaller or equal to the error-
correcting capability t.. Thus, there is a match when the Hamming distance is smaller
than t., du(f5, £5) = |/fg @ 3|, < t., and the Bit-Protection module can be modeled
as a Hamming distance classifier with threshold ¢ .. Some [n., k., t.] settings of the BCH
code are givenin Table 3.1. Note, that the maximum number of bits that can be corrected
lies between 20-25% of the binary vector.

Table 3.1: Some examples of the BCH code given by the codeword (n . and message (k.)
length, the corresponding number of correctable bits (¢ ), and the bit error rate t. /n..

| Ne | k. | te | BER = t./n. |

5| 3 20.0%
15 1| 1 6.7%
6 | 7 22.6%
31 16| 3 9.7%
63 7 115 23.8%
16 | 11 17.5%
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Modeling Summary

Here follows a summary of the modeling choices and assumptions that we have made:
e Acquisition and Feature-Extraction Block fg

- Modeled as a Parallel Gaussian Channel, where each feature component is
defined by:
* Within-class pdf ~ V(0,02 [5])
- Describes the genuine biometric variability and measurement noise
- HomogeneousvarianceacrosssubjectSJVQV,i[j] =02 [j],Vi
- Noiseisindependent across channels, measurements, and subjects
* Between-class pdf ~ A (0, o [5])
- Characterizesthe ;[j] variability across the population
- Feature components are independent
* Total pdf ~ N(0,02[5])
- Defines fr[j] across the population

e Bit-Extraction Block fg
- Single bit extraction method, with binarization threshold §[j] = 11 [7]
e Bit-Protection and Bit-Comparator Block

- Hamming distance classifier with the ECC settings defining its decision bound-
ary.

3.24 Analytical Estimation of Bit-Error Probabilities, FRR and FAR.

The goal of this study is to analytically estimate the performance of the presented gen-
eral template protection system. In Section 3.2.3, we have presented a comprehensive
description of such a system including the modeling approach or properties of each block
that forms the basis of our analytic framework. In case of a Hamming distance classifier,
the goal isto analytically estimate the expected genuine and imposter Hamming distance
pmfs ¢qe and ¢im, respectively (see Figure 3.1). With these pmfs we can compute the
fasergectionrate 8 (FRR) and the false acceptance rate o (FAR), where 3 is the proba-
bility that a genuine subject isincorrectly rejected and « isthe probability that an imposter
isincorrectly accepted by the biometric system.

The Hamming distance between two binary vectors is the number of bit errors be-
tween them. Knowing the bit-error probability for each bit P.[j], the expected Hamming
distance dy; between £ and £ is

_ Nr
dH(f]%afg) - lee[j] (31)
]:

Further, we define the pmf of the number of bit errors of component j as
P; = [1 — P.[j], Pe[j]], where P;(0) isthe probability of no bit error (di = 0) and P;(1)



36 Chapter 3. Theoretical Classification Performance

Py
|
fslle 5] P, .
Kl2e 12 E P.[2]
Py % Py x Py % * Py,

f53] @ fg3]

; .

v

w [
Probability mass

0

1 2 3 4 5 6
[NF] Hamming distance

Figure 3.6: A toy example of the convolution method given by (3.2).

is the probability of a single bit error (dgy = 1). Under the assumption that the bit-error

probabilities are independent, the pmf of d (£, ) is defined as

def e pv

= P{du(fg. f§) = k} (3.2)
= (Pl * P2 L 3 PNF)(]C),

where the convolution is taken of the pmf of the number of bit errors per component. A

toy exampleis shown in Figure 3.6. For the two extreme cases of (3.2) we have

o(k)

Np Np

o(0) = [Ir©=]]0-RLD, (33)
JJ;F JJ;F

o(Ne) = [ A= [T Rl (34)

which are the probabilities of having zero or Ny errors, respectively. The FRR corre-
sponding to a Hamming distance threshold T', 5(T'), is the probability that the Hamming
distance for a genuine comparison is greater than 7", therefore

B(T) =Pldulfy; f5,) > T}
Np
= Z ¢ge(k)'

k=T+1

(3.5)

Furthermore, «(T') is the probability that the Hamming distance for an imposter compar-
ison is smaller or equa to the threshold 7', hence we have

aT) =Pldulfs,;. 15 ;) < T.¥i # j}
T
= Z ¢1m(k)
k=0
In other words, if we want to estimate 5(7") and «(7") analytically we have to obtain an

analytic closed-form expression of the average bit-error probability P.[j] across the pop-
ulation for both the genuine and imposter case, P£°[j] and P™[;] respectively. Because

(3.6)
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of the PGC modeling approach, P&¢[;] will depend on the within-class and between-class
variances o2 [j] and o2 5], respectively. Furthermore, we also want to find the relation-
ship between P2°[4] and the number of enroliment N, and verification N, samples. As
mentioned in Section 3.2.3, in case of multiple samples the average of the extracted f g of
each samplesis taken prior to the binarization process.

P, Estimation for the Imposter Case: Peim

For the imposter case, we are considering the comparison between binary vectors of two
different subjects, du (fg ;, fy ) Vi # j. As mentioned in Section 3.2.3, we focus on
the binarization method based on thresholding with 6 = uyp, = ug (see Figure 3.4).
Because the total pdf is assumed to be Gaussian with mean ., we have equiprobable
bit values. This implies that the bit-error probability of randomly guessing a bit is 1/2,
P™[j] = 1/2,Vj. Thus, under the assumption that the feature components are indepen-
dent, imposter comparisons are similar to matching £ with arandom binary vector.
Since Pim[j] = 1/2,V;, we can simplify ¢;, (k) asthe binomial pmf

Gim(k) = (Pr*Pax...% Py,)(K) (3.7
(7 )t - pngpe @8)
= (]\IQF) 9~ Ne (3.9)

wherethe simplification step from (3.7) to (3.8) holdsbecause of P™[i] = Pim[j], Vi # j.
Furthermore, a(T") turnsinto

T T N,
) — 9—Nr F
> i) =27 Y (7). (310
k=0 k
which correspondsto what is used in [104].

P, Estimation for the Genuine Case: P2¢

We focus on estimating the bit-error probability for each component P £°[5], and for con-
venience purposes we omit the component index j. Using the Gaussian model approach
as defined in Section 3.2.3 and depicted in Figure 3.7, the expected bit-error probability
P5¢ over the whole population is defined by

P& = EPE(n)

f oo (1) P2 (1) dp, (3.12)

where Pg°(11) is the bit-error probability given 1 and py, is the between-class pdf. With
the binarization threshold § = iy, = 0, this problem becomes symmetric with respect to
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0. Consequently, (3.11) becomes

0
P =2 [ po(p)P&(n)du

0 _(M)Z
=2 | gmme N PE(dn (3.12)

N 0
=2 o0 pap
— 0o

_ 1
where A = N

We define the measurement or acquisition error probability P, depicted by the shaded
areain Figure 3.7, asthe probability that the measured bit is different than the bit defined
by the mean . of thefeaturevalue. P, becomessmaller at either alarger distance between
1 and the binarization threshold ¢ or a smaller within-class variance. Since multiple
enrollment (N,) and verification (/V,) samples are considered, P, aso depends on the
number of samples IV, given as

VN (&z—p)

Pu(uiN) = | X ’<fTw)2dx (3.13)
0

e
2O w ’

where we used the fact that when averaging N samples the within-class variance de-

creases as
2 o= o = 3.14
= N = _
UW,N N Ow,N /N ( )

With use of the error function

erf(z) =% fe_t2 dt. (3.15)
0
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and by definingn = VN P, (u; N) can be rewritten as
V20,

Pa(u; N)

Sk

oy 2
f e~ (@=p)"q.p

0
J e~ =" dz, with z = n(z — w)

Sk

(3.16)

nu
oo, e,
fezdsze_zdz Jforp <0
0 0

s ﬁerf(—w)}

Sk

2 2

r—u—||

—

N[

[

where we used the well known result [ xe~(*)” dy = Y= Thereis a bit-error proba-
bility only when there is a measurement error at either the enrollment or the verification
phase. If there is ameasurement error in both phases then the measured bits still have the
same bit value, thus no bit error. Hence, P.(u) of (3.12) becomes

—erf(—nu)],

P& (p; Ney Nv)= (1 — Pa(p; Ne)) Pa(p; Nv)
Pa(ps Ne)(1 — Pa(ps; Nv))
1 (1 + exf(—nep)) (1 — ext(—nyp)) (317
1(1[ — erf(—nep))(1 + erf(—nvu))]

1 — erf(—nep)ert(—nvu)],

1+

wheren, = VNe gng Ny = VN, By substituting (3.17) into (3.12) we obtain

V20 T V20,
0
PE(Ney No)=—= | &% [1 = ext (—pupp)ers (—nup)] dp
Nz
— A [0 1~ ert(nepert ()] du
LS
0
:% a % /e_wzerf(neu)erf(mu) dp. (3.18)

The integral of the erf function can be solved using the general solution of erf inte-
grals[105] given as

%) arctan (“7}7)
/ e’ erf(az)erf(bx)dx = VelGatizh Vg (3.19)

VoL

0

Thus, (3.18) can be solved by using (3.19) withy = A2, a = 1., and b = 7, as
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arctan | ——=_eflv._____
N A2 (n2+n2+422)

P8 (Ne, Ny, 0w, 01)= Ve

Sl

N[= D=

=1_ % arctan (—" VN Ny ) (3.20)
A Ne+Nv+(%})
= % — Larctan Th v Ne Ny )
7‘ 2

sw/ NetNo+(22)7

where we also included o, and o1, as an argument of the estimation function. As can be
observed, P2¢ is dependent on the o}, /o, ratio, N, and N,,.

Summary

We have presented the analytic expressions of the genuine (¢ ,.) and imposter (¢;,) Ham-
ming distance pmfs and the corresponding FRR (5(7")) and FAR («(T")) curves. Because
of the choice of the binarization scheme theimposter bit-error probability P ™[;] does not
need to be estimated and can be assumed to be equal to 1/2 for each feature component.
However, the genuine bit-error probability P£°[j] has to be estimated using the analytic
expression in (3.20). Therefore, in the remainder of this study we only need to estimate
Pge[4] and for convenience reason we frequently omit the ge superscript.

3.25 Experimental Evaluation with Biometric Databases

In this section, the analytic expressions and the effect of the Gaussian assumption are
validated using two real biometric databases, which are discussed in Section 3.2.5. To
estimate P, [5] using (3.20), we need to estimate the within- and between-class variances
02 [4] and o [j], respectively. In Section 3.2.5 we show that the within-class variance
influences the between-class variance estimation and we present a corrected estimator.
Dueto thelimited size of the databases, estimation errors do occur when estimating Pe|j]
even in the case when the underlying model is correct. We account for these errors by
estimating the 95 percentile boundaries in Section 3.2.5. We then present the results of
estimating P.[j] in Section 3.2.5, and the effect of using PCA as a mean to generate un-
correlated featuresin Section 3.2.5. We conclude by portraying the experimental ¢ 4 (k),
¢im(k), B(T), «(T), and DET curvesin Section 3.2.5.

Biometric Databases and Feature Extraction

Thefirst database (dbl) consists of 3D faceimagesfrom the FRGC v2 dataset [99], where
we used the shape-based 3D face recognizer of [106] to extract feature vectors of dimen-
sion Norig = 696. Subjects with at least 8 samples were selected resulting in Vg = 230
subjects with a total of Vy = 3147 samples. The number of samples per subject varies
between 8 and 22 with an approximate average of N; = 14 samples per subject. The
second database (db2) consists of fingerprint images from Database 2 of FVC2000 [100],
and uses a feature extraction a gorithm based on Gabor filters and directional fields [107]
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Figure 3.8: EER of the training set after applying PCA for different reduced number of
features Ng.

resulting in 1536 features (Noye = 1536). There are Ny = 110 subjects with N; = 8
samples each. An overview isgivenin Table 3.2.

The components of the original feature vectors are dependent. Therefore, we ap-
plied the principle component analysis (PCA) technique to decorrelate the features and
reduce the dimension of the feature space if necessary. Furthermore, we partitioned both
databases into a training and testing set containing 25% and 75% of the number of sub-
jects, respectively. The size of the test set is a very important factor in this analytic
framework, thus we traded off the size of the training set and limited it to 25 % of the
number of subjects. We applied PCA on the training set and reduced the dimensionality
(IVr) of the feature vectors to the codeword lengths presented in Table 3.1 and computed
the equal error rate (EER) (see Figure 3.8), which is defined as the point where FAR
equals FRR. The optima performance is computed using the bit-extraction method in
Section 3.2.3 and a Hamming distance classifier. The optimal number of features for both
dbl and db2 are in the range of 15, 31, and 63. Note that the best EER of 12.7% for
dbl and 15.2% for db2 is higher than the reported performance of template protection
systems based on these databases in the literature (~ 8% for dbl in [33] and ~ 5% for
db2 in [35])3. However, our proposed analytic framework is not focused on optimizing
the performance but on analytically estimating the performance. The effect of the PCA
transformation on the feature val ue distribution and the error probability estimation is dis-
cussed in Section 3.2.5. Unless stated otherwise, the remainder of this analysis is based
on the PCA transformed test set using the PCA matrix obtained from the training set.
For convenience, the remainder of this work is mainly focussed on the optimal setting of
Np = 31.
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Table 3.2: Overview of the biometric databases

Database | Nowg | Ns | Ny | Ni= Ny/N,
FRGC V2 (dbl) | 696 | 230 | 3147 ~ 14
FVC2000 (db2) | 1536 | 110 | 880 8

Table 3.3: Variance estimation table as defined in [108].

Source of  Sum of squares d.f. Auxiliary
variation
Within Z Z (fig —f5)® Ne— N fu = NL > fig
1=1j5=1 =1
Ng ’ ) 1{75 N;
Between > N; (i — j2) Ne=1 =533 fij
=1 i=1j=1
Ns N; .
Total ZZ(f”— ) Ny —1

@
Il
=

Variance Estimation of o2 and o

The analytic expression Pg°(Ne, Ny, 0y, 01,) in (3.20) requires the standard deviations
ow and oy,. The estimated values ¢, and &}, are obtained from the test set of the database
under consideration. The variances 52, and 67 are estimated according to the variance
estimation table given in Table 3.3 from [108], where f; ; is the jth real-valued feature
vector of subject i, N isthe number of subjects, V; isthe number of samples or feature
vectors of subject 7 and Ny is the total number of samples Ny = Zf\ﬁl N;. Thistable
isalso used in ANOVA (analysis of variance) models and describes the method for com-
puting the sum of squares of the source of the within-class (SSW), between-class (SSB),
and the total (SST) variation. Two important facts deriving from this table are that (i) the
total sum of squaresis equal to sum of the within-class and between-class sum of squares
SST = SSW + SSB, and (ii) the total number of degrees of freedom (d.f.) is equal to
the sum of the between-class and the within-class degrees of freedom. The details are
in [108]. With the use of the table, the variance estimation is given as the sum of squares
divided by the d.f., thus

Ns Ni

G (fig = 0a)° (321)
i=1j=1
NS . —
6’? = Nt 1 Zl Z (f?u ) ) (323)
T Jj=

3In [33] the most reliable feature components were selected and in [35] six enrollment samples were used.
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Figure 3.9: The within-class, between-class, and total variance estimation for different
settings of {02, 02 }.

with the exception of 62, which is also divided by the average number of samples per
subject N;. Notice that 62 is calculated as the variance of the aggregated zero-mean
samples of subjects, whi Ietaki ng into account that NV, degrees of freedom are lost because
of the need to estimate the mean of each subject i ;. Furthermore, 62 is also equal to the
weighted average of the variance of each subject, because (3.21) can also be written as

2 2 2
A _71(N,- —1)o5,
1 - 2 2
= = N; —1)63 ;
N“(Ni_l) i:l( ) ’ (3 24)
L LSSV -1 th '
= - , Wi
o SATTE P R
N;
R . N\2
Goi = N71—1 Zl (fig —fi)”
]:

zlwz

The variance estimators are validated using a synthetically generated database of
N; = 1000 subjectswith N; = 4 aampleseach The parameters {o2,, o2 } are used during
the synthesis and we estimated {62, 62, 62} using (3.21), (3.22) and (3.23), respectively.
The synthesis and estimation processes are performed ten times (10-fold) and the average
of the result is taken. Figure 3.9 shows the estimation results of 52 for different values
of 02 with o = 2, and both 62 and 67 for different values of o2 with 02 = 2. We can
conclude that the 52, and 62 estimators give values that closely resemble the underlying
model parameters o2, and o2, but we observe a constant estimation error for the 62 esti-
mator . This estimation error is examined for different values of aVQV and V;, asshown in
Figure 3.10(a) and (b), respectively. The figures show that the estimation error increases
when o, increases or when NV; decreases.

The constant estimation error of & is caused by the estimation error of the sample

which turnsinto 67, = 5~ S - 62, when N; isequal for each subject.
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Figure 3.10: The between-class estimation of (3.22) at (a) different values of o 2 with
N; = 2 and (b) different values of N; with o2 = 2, with its corrected version (3.27) in
(c) and (d), respectively.

mean of each subject i;. From [108], we know that the variance of the sampling distribu-
tion of the sample mean /i, is given by

RS

— Twi (3.25)

i

g

=

2
Hi

If more samples are taken to estimate the sample mean, the estimation variance decreases.
Thisimplies that the estimation 6 of (3.22) isin fact

=iV

6% = EST(0% +02) = EST(o} + %), (3.26)

A

where EST (1) = 7 is the estimation of parameter 7. The corrected version of the
between-class estimation 5 thus becomes

5t =62 - % (3.27)
Figure 3.10(c)(d) shows the results of applying this correction on the results of Fig-
ure 3.10(a)(b) and the estimation has clearly improved.
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Figure 3.11: Random estimation errors due to the random nature and the upper (UB) and
lower (LB) boundaries.

Boundariesof Tolerated Estimation Errors

When estimating P, [j] of a given biometric database, there are always estimation errors
because of its random nature. Even if we randomly generate a synthetic database that
fully complies with the Gaussian modeling assumption, there are still estimation errors.
These estimation errors are caused by the random nature of the problem and should be
tolerated. Hence, we compute the upper (UB) and lower (LB) tolerance bounds for the
estimation errors. Such an example is depicted in Figure 3.11 for a synthetic dataset
of similar size as db2 (N; = 110and N; = 8) but with Np = 500 and 02 [j] = 1
with o[;] randomly drawn from the uniform distribution U (0, 16) with minimum and
maximum value of 0 and 16, respectively. Figure 3.11 compares the estimated bit-error
probability of the synthetic dataset ng [7] with the corresponding analytically obtained
Pge[4], which stands for P$°(N,, Ny, 6w[j], ou[j]) of (3.20), where 6, [j] and &1,[j] are
estimated using (3.21) and (3.27), respectively. Pjy [7] is reported by acircle (‘0') at its
estimated 41, [j]/6w/[;] ratio and its analytic estimation is the value of the solid line at the
same 6 [j]/ 7] ratio. A greater vertical distanceimplies agreater analytical estimation
error.

The test protocol for calculating PY[j] is as follows: for each feature component,
Psv[j] is calculated as the average across the bit-error probability of each subject P2Y|5].
The subject bit-error probability ngl [4] results from performing 200 matches and deter-
mining the relative number of errors. For each match, N distinct feature vectors are
randomly selected, averaged and binarized (enrollment phase). The obtained bit is com-
pared to the bit obtained from averaging and binarizing N, different randomly selected
feature vectors of the same subject (verification phase).

We empirically estimate the upper (UB) and lower (LB) boundaries by clustering the
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Figure 3.12: Comparison between Pg°[j] and PIP1[j] for different settings (@) N. =
Ny =1,(b) Ne = Ny =2, (c) No = Ny = 3,and (d) N. = Ny, = 4. Thecircles (discs)
correspond to cases where PAb1[;] fallswithin (outside) the boundaries.

points into equidistant intervals on the x-axis and compute the 95 percentile range of the
PsY[4] values in each interval. The circles (discs) correspond to cases where PSY[j] is
within (outside) the 95 percentile boundaries.

Validation of the Analytic Expression Pg¢

In this section we experimentally validate the analytic expression of the bit-error proba-
bility P5°. In the previous section, we have discussed the use of PCA for decorrelating the
feature components and for reducing the dimensionto Ny = 31. In order to have more
componentsfor the validation we apply PCA but without reducing the number of features.
Hence, we consider the original number of features (696) for database dbl. However, for
database db2 we only consider 223 components since 25% of the total number of sub-
jects (i.e. 28 subjects) with a total of 224 feature vectors were used to derive the PCA
projection. Thus, to avoid singularities we have reduced the number of featuresto 223.
To assess the model assumptions, we compared the estimated bit-error probability of
the biometric database P4"[j] with the corresponding analytically obtained Pg¢[j]. The
same test protocol is used as discussed in Section 3.2.5. The experimental results for dbl
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Figure 3.13: Comparison between Pg°[j] and PI"2[j] for different settings (@) N. =
Ny =1,(0) Ne = Ny =2, (c) No = Ny = 3,and (d) N. = N, = 4. Thecircles (discs)
correspond to cases where P3b2[5] falls within (outside) the boundaries.

and db2 for different values of N, and N, are shown in Figure 3.12 and Figure 3.13,
respectively. The circles (discs) correspond to cases where P3P 5] is within (outside) the
95 percentile boundaries. We refer to the number of discsasthe estimation error e p, . If al
the assumptions hold then we expect the relative € p, to be around 5%. Table 3.4 reports
the absolute and relative e p,. Because ep, is noisy due to the random selection of N,
and N, samples within the test protocol, we repeat the estimation 20 times and report its
mean. For dbl, ep, is16.7% for N, = N, = 1 and decreasesto 13% for N, = NV, = 4.
Inthe case of db2, e p, isvery large; 27.3% for N, = N, = 1 but decreases significantly
when both N, and N, are increased, reaching 6.3% when N, = N, = 4. Thus, for
both databases there is a clear improvement when increasing the number of samples. We
conjecture that the improved bit-error probability estimation performance is due to the
fact that the feature value distribution becomes more Gaussian when averaging multiple
samples as stated by the central limit theorem [109]. Also note that many P4P![;] estima-
tions of dbl are very close to the 95 percentile boundaries, hence small estimation errors
can lead to large variation in ¢ p, that could explain the bit-error probability estimation
performance differences between dbl and db2 observed in the table.
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Table 3.4: Thenumber of casese p, where P4"[;] is outside the 95% percentile boundaries

per database and { N, N, } setting.

dbl db2
Setting Abs. ep, | Rel.ep,. | Abs. ep, | Rel. ep,
No=N,=1 116 16.7 % 61 27.3%
No = N, = 103 14.8% 33 14.8%
Ne=N,=3 91 131% 18 8.1%
Ne=N, =4 92 13.2% 14 6.3%
The effect of PCA on the Gaussian Assumption
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Figure 3.14: Normal probability plot of each feature vector component of dbl and db2

before and after applying PCA.

As described in Section 3.2.3, the analytic framework is based on the Gaussian model
assumption. Figures 3.14(a)(c) show the normal probability plot for each component of
the feature vectors of dbl and db2 respectively, before applying the PCA transformation.
The normal probability plot is a graphical technique for assessing the degree to which a
dataset approximates a Gaussian distribution. If the curve of the data closely follows the
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Figure 3.15: PPx[j] at different settings of N, and N, for both dbl and db2 before
applying the PCA transform.

dashed-thick line then the data can be assumed to be approximately Gaussian distributed.
Prior to comparing, we normalized each feature so that it has zero-mean and unit-variance.
For both databases it is evident that the distributions before applying PCA are not Gaus-
sian, because they significantly deviate from the dashed-thick line that represents a perfect
Gaussian distribution. Figures 3.14 (b)(d) depict the normal probability plot for each of
the 696 components of dbl and the 223 components of db2 respectively, after applying
PCA. For both databases the figures show that after applying PCA the features tend to
behave more like Gaussians. Yet, the tails deviate the most from being Gaussian where
for the most cases the empirical distribution is wider.

Figure 3.15 showsthe P, estimations before applying PCA for both databasesin two
cases. No = N, = 1and N, = N, = 4. Note that before PCA dbl and db2 have 696
and 1536 components, respectively. For dbl e p, is equal to 99.8% for the No = N, =1
and 61.2% for the N, = N, = 4 case, whilefor db2 ¢ p, is 71% and 18%, respectively.
Comparing these results with the e p, values when applying PCA, see Table 3.4, we can
also conclude that applying PCA makes the features significantly more Gaussian.
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Figure 3.16: Results for dbl with N = 31, (a)(b) P! and the analytical estimation of
Pge, ()(d) ¢pge (k) and ¢im (k) pmfs, and (€)(f) the a(T") and 5(T") curves. The graphson
theleft (right) correspondto N, = Ny = 1 (N, = N, = 4).

Validation of the Analytic Expression of FRR and FAR

For both dbl and db2, we analytically estimate the genuine ¢ 4. (k) and imposter @i, (k)
Hamming distance pmfs, and the 5(T") and «(T") curves. The results are presented in
Figure 3.16 and Figure 3.17 for dbl and db2, respectively. The experimentally calcu-
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lated pmfs are indicated by ‘Exp’ while the ones obtained using the analytical model are
indicated by ‘Mod'. The experimental results are obtained using the same protocol as the
one discussed in Section 3.2.5, but storing the Hamming distance pmfs of each subject
instead. We focus on the cases corresponding to Ny = 31 with N, = N, = 1 and
N, = N, = 4.
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Figure 3.18: DET curvesfor both dbl and db2 for Ny = 31 with different values of N,
and N,. Thevalues N, and N, areindicated in the legend in the subsequent order. The
experimentally obtained curves are denoted by ‘Exp’ while the analytical by ‘Mod'.

Both Figure 3.16 and Figure 3.17 indicate that there is a good agreement between
¢im (k)-Exp and ¢, (k)-Mod. Large differences are observed between ¢ .. (k)-Exp and
¢ee(k)-Mod. However, the differences decrease when both NV, and IV, areincreased. Av-
eraging multiple independent samples leads to a higher Gaussianity degree in accordance
with the central limit theorem. This effect was also observed for the P, estimation results
in previous section. It is interesting to note the differences between the estimation errors
of ¢ge(k) of dbl and db2. For dbl the center of gravity of ¢ 4. (k)-Exp and ¢ge(k)-Mod
practically coincide. The only difference is the width of the pmfs, since the experimen-
tally obtained pmf is wider than the theoretical one. In case of db2, we see that thereis
both an alignment and awidth error, ¢ 4. (k)-Exp is skewed to the [eft.

Eventually, we are interested in estimating the DET curves. Because the DET curves
combine both 5 and «, they are thus prone to estimation errors associated with 3 or
«. The DET curves for dbl and db2 for Ny = 31 with different values of N, and N,
are shown in Figure 3.18. From these figures we can conclude that increasing N . and
N, leads to greater estimation errors of the DET curve, which contradicts the previous
finding that increasing N. and N, leads to better estimations of P, and ¢ge(k). This
can be explained by the fact that in the N, = N, = 4 case, the area of interest with
B(T) € [0.01,0.1] occurs for smaller values of «(T"), because the number of bit errors
decreases when N, and N, increase, i.e. the performance improves. As shown by the
a(T) curvesin Figure 3.16 and Figure 3.17, thereis agreater estimation error at smaller
values of «(T') thus amplifying the estimation error of the DET curve.

A summary of the probable causes for the observed differences, starting from the
most probable, are (i) the non-homogeneous within-class variance (ii) the dependency
between features, and (iii) the dependency between bit errors. Database db2 seems to
be clearly not adhering to the homogeneous within-class variance assumption, resulting
into a skewed ¢4 (k) with a large tail. Such a tail is caused by subjects that have on
average a worse performance than the other subjects. These subjects have many feature
components with a larger within-class variance leading to larger P.[j] values and thus
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Figure 3.19: The approximation of the genuine Hamming distance pmf as binomial with
P, ((3.28)) for the N, = N, = 4 case with Ng = 31.

greater Hamming distances. In the literature these subjects are referred to as goats [ 110,
111]. If the features are dependent, then the Hamming distance pmf becomeswider while
keeping its original mean. This effect is visible for both ¢4e(k) and ¢in (k) for both
databases. On the other hand, certain disturbances such as occluded biometric images
or strong biometric variabilities can cause multiple errors to occur simultaneously. Thus,
the bit errors are dependent causing the tails on the right side of the genuine Hamming
distance pmf. A right tail is dlightly visible for dbl, but is clearly present for db2 as
illustrated in Figures 3.16(c)(d) and Figures 3.17(c)(d), respectively.

In Section 3.2.6 we propose amodified model that incorporatesthe non-homogeneous
within-class variance property, while in Section 3.2.7 we further extend the model to
include dependencies.

3.2.6 Relaxingthe Homogeneous Within-ClassVariance Assumption

In this section we propose a modified model that takes the non-homogeneous property
into account, while still assuming independent feature components. The proposed method
makes use of the approximation of the convolution of (3.2) with the binomial pmf. For
the genuine case, thiswould be

Pee(k) = (\F)(Pgo)F(1 — Pge)Ne—k, (3.29)

where Pg¢ is the average bit-error probability across the feature components Pg° =
1/Np Z;VZFI Pge[j]. The approximate pmfs ¢4 (k) are depicted in Figure 3.19(a) for
dbl and Figure 3.19(b) for db2 for the N, = N, = 4 case with Ng = 31. For both
databases, the approximation is reasonably accurate.

Thus we can model the non-homogeneous effect by assuming that PS¢ is not equal
for each subject and is distributed according to a probability density p pse. The following
step consistsin determining the pdf p ps- acrossthe population and computing the average
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genuine Hamming distance pmf defined as
(i)ge(k) = f Ppee (T)Qgge(k"r)dﬂ (3:29)

where the integral limits are due to the fact that P, € [0, 1/2] and ¢4 (k|7) is the generic
case of (3.28) as )
bge(klT) = (AF) (1) (1 — 7)Ne—k, (3.30)

We propose a method for estimating p p=- using only the estimated within-class variance
of each subject 62 ,[j]. Because of the limited number of samples N;, we know from
[108] that the estimation ratio ((N; — 1)62 ;[j])/0% ;] follows the x* distribution with
N; — 1 degreesof freedom, where o2 [] isthe underlying within-class variance that hasto
be estimated and is assumed to be homogeneous. However, in practice o 2 [4] is unknown,
therefore we have to replace it by its estimate 62 [j]. It is well known that the mean
associated with a x2 distribution is equal to its number of degrees of freedom, thus by
omitting the (IV;, — 1) multiplications it becomes unit mean.
The next step is to take the average ratio over all feature components as

Np
Ki = §e > o2 i/ 1i]- (331)

j=
We can model the non-homogeneous property by assuming that for all components of
subject i the within-class varianceis o2, ;[j] = o [j]. If the homogeneous assumption
holds and the number of featuresis large, then the pdf of x ; across the whole population
becomes Gaussian with unit mean and a variance that decreases when N increases. The
variance decreases at larger values of Ny because this would be similar to having Ng
times more samples and therefore a better estimation of its mean. When there are “ goat-
like” subjects, the homogeneous assumption does not hold, then the variance of the pdf
of x; increases.

Figure 3.20(a) showsthe empirically estimated pdf of « ; for asynthetically generated
databases containing 2000 subjects with Ny = 31, N; = 8, and o2[j] = 1, where for
‘case 1 every subject hasthesame o, ,[j] = 1,in‘case 2’ o ,[j] = 1+ v4[j], and for
‘case 3 afm[j] = 1 + v; where v; is drawn from U(-0.4,0.4) and is redrawn for each
feature component separately in ‘case 2. Theresultsimply that the variance of the « ; pdf
increases when afm [4] is different for each subject (‘case 2') and increases significantly
when there is a positive correlation with the variance offset, for example when subjects
haveall their afm.[j} larger or smaller than the average value (‘case 3'). Hence, in‘case 3’
there is a clear existence of goats or doves, where the latter are the subjects that have a
small number of bit errors when matched against themselves[112].

Figure 3.20(b) comparesthe ; pdf of ‘case 1’, dbl, and db2. The results show that
both db1 and db2 do not adhere to the homogeneous property. The « ; pdf found for dbl
looks similar to ‘case 3'. However, the pdf found for db2 significantly deviates from the
synthetic cases, which confirms the existence of goats and doves. This may also explain
the significant discrepancy found when estimating the genuine Hamming distance pmfs
of db2 as shownin Figure 3.17.
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Figure 3.20: Empirical estimated probability density p ., using synthetic databases (a) of
2000 subjects with Ny = 31, N; = 8,02[j] = 1, where for ‘case 1" every subject has
thesame o2, ,[j] = 1,in‘case 2’ o3, ,[j] = 1+ v4[j], and for ‘case 3 o2 ,[j] = 1+ v;
wherev; is drawn from U(-0.4,0.4) and is redrawn for each feature component separately
in‘case 2. In (b) the comparison between ‘case 1', dbl, and db2 is shown.

Now we can empirically estimate the probability density p p=e using p;,. The rela

tionship between «,; and P£; is given by
_ Nr
Pegj = NLF Zl Pege(Nevav V ’fza'\?v[j]va'b[j])v (332)
Jj=

where we take the average of P£°[j] across all features, while using &1,[j] and the mod-
ified within-class variance estimation /62 [j]. Because of the nonlinear relationship
between Pg¢[j] and &+, [j] we take the average over Pg°[j] instead of estimating P$° us-
ing the average of &+ [j].

In practice, we can rewrite (3.29) as.

_ Ns _ _
Pee(k) = 5, 2 Gue(MIF). (3.39)

We applied this new method for estimating ¢, (k) of dbl and db2 and the results are
shown in Figures 3.21(a-d) for the N, = N, = 1 and N, = N, = 4 cases with
Ny = 31, where ¢4, (k)-Expisthe experimentally obtained pmf, ¢4 (k)-Mod is obtained
using (3.2), and @ (k)-Mod2 with (3.33). The results show that ¢ ..-Exp is better ap-
proximated when using the new method ®,.(k)-Mod2. In case of dbl there is a small
improvement, but for db2 there is a significant improvement and even a better estima-
tion is obtained when N, = N, = 4. Furthermore, Figures 3.21(e-h) show the DET
curve results. In Figures 3.21(e)(f) the same « is used for each DET curve in order to
isolate the estimation errors of ¢4 (k), while in Figures 3.21(g)(h) a-Exp is used for
the “Exp’ curves and «-Mod is used for both the ‘Mod’ and ‘Mod2’ curves. With the
new method the DET curve estimation has improved, most significantly for db2. How-
ever, the differences between Figures 3.21(e)(f) and Figures 3.21(g)(h) clearly indicate
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Figure 3.21: Results of the proposed method incorporating the non-homogeneous prop-
erty of dbl and db2 for the cases N, = N, = 1 and N, = N, = 4 with Np = 31.
Figures (a-d) show the Hamming distance pmf estimations while figures (e-h) show the
DET curves estimation, where ‘Mod’ and ‘Mod2’ indicate the modeling method without
and with the non-homogeneous property, respectively. In (e) and (f) al the DET curves
are plotted using the experimentally obtained «-Exp, while in (g) and (h) we use the
a-Exp for the *Exp’ curvesand a-Mod for both the ‘Mod' and ‘Mod2’ curves.
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that the remaining estimation errors are caused by the estimation of «. Asshownin Fig-
ures 3.16(c)(d) and Figures 3.17(c)(d) there is an estimation error of ¢ ;,,, which we
consider to be caused by the fact that the feature components are dependent.

3.2.7 Incorporating Feature Component Dependencies

In previous section we observed that a significant part of the remaining DET estimation
errorsis related to the estimation errors of the ¢i,-Exp pmf. In this section we propose
afurther extension of the analytical framework in order to incorporate dependencies be-
tween feature components. We propose to estimate the dependency from the ¢ ;,,, pmf and
apply it to the ¢, pmf estimation. Hence, we assume that both pmfs are influenced by
the dependency to the same extent.

We estimate the dependency from ¢;,,-Exp by fitting it with a Gaussian approximation
of the binomial pmf of (3.9) with the variance as the fitting parameter. For large values of
Ny, the binomial pmf with probability P, and dimension N can be approximated by the
Gaussian density N (Ng Py, Ny Po(1—P,)), withmean Ny P, and variance Ng Pe(1—P).
For the imposter case we know that P, = 1/2, from which its mean and variance become
Nr/2 and Ny /4, respectively. Hence, the Gaussian approximation of the ¢, -Exp pmf
with the variance parameter «J used for fitting becomes

(k—p)?
N B
$im (k)-Mod-) = ——=——e" 27
_ (k=NpPe)?
= Vemaae (3.34)
™ Fle(l—rle
(2k—Np)?
— 2 e 20Np
V2m 9 Np

where the optimal +J is computed by minimizing the mean-square error (MM SE) as
Ng 2
Dopt = AGmin 3 (d)im(k)-Exp - ¢im(k)-Mod-19) . (3.35)
¥ k=0

The estimation results of +J,,, for the N = N, = 1 case are shown in Figure 3.22
for both databases. The optimal value of ¥, is 1.11 for dol and 1.17 for db2. For
both databases ¥+ is very similar, which may indicate that the amount of dependencies
between the feature components is relative similar for both databases. Furthermore, the
¢im-EXp pmf is better estimated when compared to its first estimation disregarding the
feature component dependencies as depicted in Figure 3.16(c) and Figure 3.17(c) for
dbl and db2, respectively.

With the Gaussian approximation including the variance correction with 9 ,,,; we have
abetter estimation of the ¢4, pmf by rewriting (3.33) as

— (k=P Np)?
— oz (3.36)

N
— 1 7 1
Pge(k) = N, Z; me ’

with o2, = 0, Ny P25(1 — P2%). Because of the Gaussian approximation errorsit does

not hold that the sum of the probability mass equals to one, therefore we normalize it
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Figure 3.22: Results of estimating ¥ ,,: from ¢im-Exp using (3.35) forthe No = N, =1
case for both databases. The variance corrected Gaussian approximated curve as de-
scribed by (3.34) is depicted as ¢i,,-Mod-19.

according to

i)/ (k) - ﬁ@ge(k)
S By (k) (3.37)
k=0

The estimation results using (3.37) for the cases of ¥ = 1 and ¥ = ¥, are depicted in
Figure 3.23. For the ¥ = 1 case the Gaussian approximation is used without the variance
correction. Figures 3.23(a-d) show that the ¢ 4. (k) pmf estimation has slightly improved.
The &, .-Mod-,,,,; curveiscloser to ¢, (k)-Exp than ®; -Mod-iJ;. Thisholds acrossthe
whole curvefor the N, = N, = 1 caseand mainly for theright tail forthe N, = N, =4
case. The same conclusions are also portrayed by the DET curves of Figures 3.23(e-f),
where each DET curve uses the same « curve, namely the experimentally obtained «-Exp
in order to isolate the ¢, (k) pmf estimation errors. The DET curvesin Figures 3.23(g-h)
use the actua o curves, thus a-Mod-9; for the DET-Mod-; curvesand a-Mod-9,,,, for
the DET-Mod-9,,,; curves, respectively. The curves show that the DET-Mod-9 ,,,; curveis
clearly closer to DET-Exp curve, because a-Mod-9 . is a better approximation of a-Exp
as we have shown earlier.

3.2.8 Practical Considerations

In previous sections we have presented several analytical models for estimating the DET
performance curve. However, as stated previously, because of the use of an ECC the FRR
is lower bounded because of the limited number of bits the ECC can correct. For the
setting of Ng = 31, which equals the codeword length ., the BCH ECC can correct
up to 7 bits as shown in Table 3.1. The experimentally achieved performance and its
analytical estimates at this operating point are given in Table 3.5. The results indicate
that at this operating point there is not a significant difference between the estimations
using the ‘Mod’ and ‘Mod2" models, while the ‘Mod-9 ;" estimator leads to the best
estimation where its significant improvement is of the «.
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Although we have presented an analytical framework for analysis, it could also be
used in practical cases. For example, consider the scenario where a database has been
collected with a maximum of five samples per subject. Hence, the performance could
only be calculated for caseswhere N, + N, < 5. However, this restriction does not hold
for our proposed analytical framework. By estimating o 2, o2, :;, and ¥, from the given
database, the performance could be estimated for the cases where N, + N, > 5. Either
the performance could be estimated for a specific N, and IV, setting or the lower bounds
of the N, and NV, setting could be estimated in order to obtain a certain performance or
better. Given the same scenario as for Table 3.5 where the performance is estimated at
the maximum error capability of the ECC for both databases, dbl is expected to reach
6 <0.1when N, = N, > 8,while N, = N, > 7 for db2.

3.2.9 Conclusions

We have proposed an analytical framework for estimating the DET performance curve of
abiometric system, based on binary feature vectors, for different settings of N and NV,.
Thefirst proposed estimation method used a simple Parallel Gaussian Channel frame-
work for modeling the pdf of the real-valued features. Each component has its own chan-
nel with the corresponding additive Gaussian noise representing the biometric variability
and measurement noise, called the within-class variability. The results showed signifi-
cant estimation errors and were far from optimal, mainly because of the homogeneous
within-class variance assumption. Consequently we proposed a modified framework to
incorporate the non-homogeneous property, which in fact assumes that the within-class
variance is different for each subject. The estimation improved significantly and the re-
maining estimation error is thought to be caused by the estimation errors of the false ac-
ceptance curve due to dependency between feature components and corresponding bits.

Table 3.5: The experimentally (‘Exp’) achieved oo and 3 and its analytical estimates using
the simplistic model (‘Mod’), the model relaxing the homogeneous property (‘Mod2’),
and the mode! also incorporating the feature component dependencies (' Mod-1 ,:").

dbl
Ne=Ny =1 Ne=Ny =4
a J6] « Jé]
Exp 3.59-10-3 | 7.33-10~T | 3.73-10=3 | 3.17-10" T
Mod 1.66-1073 | 8.43-10~1 | 1.66-10"3 | 2.79-10"1
Mod2 1.66-1073 | 8.25-10~! | 1.66-10"3 | 2.77-10"1!
Mod-Jopt | 3.06-1073 | 8.15-107! | 3.06-1073 | 2.94 101
db2
Ne=Ny =1 Ne=Ny =4
a J6] « J6]
Exp 6.35-10 3 | 5.568-10"1 | 5.28-10 3 | 1.96-10 1
Mod 1.66-1073 | 7.66-10"' | 1.66-10"3 | 1.88.10"!
Mod?2 1.66-1073 | 6.31-10"! | 1.66-10"3 | 1.88-10~!
Mod-¥op: | 3.80-1072 | 6.31-1071 | 3.94-1073 | 2.01-107!
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The final proposed framework also incorporated feature component dependency, whose
value was derived from the calculated imposter Hamming distance pmf of the database.
This method resulted in the most optimum estimation of the DET performance curves.
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Figure 3.23: Results of the proposed method incorporating both the dependency and non-

homogeneous property of dbl and db2 for the cases N, =

., =1land N, =

v:4

with Ny = 31. Figures (a-d) show the ¢, estimations, while (e-h) show the DET curves
estimation. The label ‘Mod-v;’ indicates the new modeling method but with 9 = 1,
hence using only the Gaussian approximation of the binomia pmf including the non-
homogeneous property. The label ‘Mod-9,,;" indicates the cases where ¥ = . In (€)
and (f) al the DET curves are plotted using the experimentally obtained a-Exp, whilein
(g) and (h) we use the a-Exp for the ‘Exp’ curves, a-Mod-1 ; for the ‘Mod-1;" curves
and a-Mod-9,,, for the *Mod-4,,;" curves.
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3.3 Classification Performance Comparison of a Contin-
uous and Binary Classifier under Gaussian Assump-
tion

3.3.1 Abstract

Template protection techniques are privacy and security enhancing techniques of biomet-
ric reference data within a biometric system. Several of the template protection schemes
known in the literature require the extraction of a binary representation from the real-
valued biometric sample, which raises the question whether the bit extraction method re-
ducesthe classification performance. In thiswork we providethe theoretical performance
of the optimal log likelihood ratio continuous classifier and compareit with the theoretical
performance of a binary Hamming distance classifier with a single bit extraction scheme
as known from the literature. We assume biometric datamodeled by a Gaussian between-
class and within-class probability density with independent feature components and we
also include the effect of averaging multiple enrolment and verification samples.

3.3.2 Introduction

The introduction of the ePassport with fingerprint raised some question marks on the
privacy of the subjects and the security of the stored biometric data, especially when the
Dutch government decided to store the fingerprint samplesin a centralized database [ 113].
The security and privacy risksrelated to the storage of biometric dataare (i) identity fraud
where an adversary steals the stored reference template and impersonates the genuine
subject of the system by some spoofing mechanism, (ii) limited-renewability implying the
limited capability to renew a compromised reference template due to the limited number
of biometric instances (for example we only have ten fingers, two irises or retinas, and a
singleface), (iii) cross-matching or linking reference templates of the same subject across
databases of different applications, and (iv) derivation of sensitive medical information
whereit is known that biometric data may reveal the presence of certain diseases.

Thefield of template protection aims at mitigating these privacy and security risks by
developing techniques that provide (i) irreversibility implying that it is impossible or at
least very difficult to retrieve the original biometric sample from the reference template,
(it) renewability whereit is possible to renew the reference template when necessary, and
(iii) unlinkability which prevents cross-matching. In the literature, numerous template
protection methods such as the Fuzzy Commitment Scheme (FCS) [36], Helper Data Sys-
tem (HDS) [33, 34, 48], Fuzzy Extractors [64, 65], Fuzzy Vault [80, 84] and Cancelable
Biometrics [59] have been proposed.

In generdl, the extracted feature vector from the biometric sampleisreal-valued, while
several of the proposed template protection schemes depend on the extraction of a binary
representation from the biometric sample. The classification performance of the tem-
plate protection scheme thus depends on the combination of the bit extraction process and
the binary classifier. Yet, an unanswered question is what the difference is between the
theoretical classification performanceat binary level (after the bit extraction) and the per-
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formance at the continuous level (before the bit extraction). A potential performance loss
after the bit extraction process may represent the penalty for the requirement to extract a
binary representation from the biometric sample. In [95], the performance of asingle bit
extraction process with a Hamming distance classifier has been theoretically determined
under the assumption that the biometric datais Gaussian distributed. In thiswork we first
discuss the theoretical performance of the optimal likelihood-ratio continuous classifier,
under the assumption that the biometric data is Gaussian distributed. 1n [37], the theo-
retical performance has been derived where the reference template is the average of N,
enrolment sampleswith asingle verification sample. We extend this analysisby including
theaveraging of NV, verification samples. Lastly, we compare the theoretical performance
difference between the continuous and binary classifier and study the influence of the
number of feature components and the number of enrolment and verification samples.

The outline of this paper is as follows. In Section 3.3.3 we briefly describe the model
of the biometric data under Gaussian assumption including the averaging of multiple en-
rolment and verification samples. The theoretical performance estimation for the con-
tinuous classifier is derived in Section 3.3.4 and Section 3.3.5 briefly describes the the-
oretical performance for the binary classifier known from the literature. The theoretical
performance comparison between the two classifiers and the effect of averaging multiple
enrolment and verification samplesis studied in Section 3.3.6. We conclude with our final
remarksin Section 3.3.7.

3.3.3 Preiminaries

Random variables are underlined. Let z; ~ N(He,afv), i = 1,..., N, denote the en-
rolment samples (features, in fact) and y, ~ N(uv,aﬁv), 1 =1,..., N, the verification
samples with o2 being the within-class variance. We assume that for a given class mean
1 the samples drawn from that class arei.i.d. The enrolment and verification class means
are also Gaussian random variables, in particular p¢_,p =~ N(0, o) with o2 being the
between-classvariance. Thereferencetemplate - and the verification templ ateu aresam-
ple means, i.e.

&

(3.38)
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Because the samples are assumed to be independent we obtain r ~ N (p_, —VQV) andv ~
0_‘2
N(p,, 5)-
In the genuine case, the features originate from the same, unknown, mean, i.e. 1,
B, =pIn the impostor case the features originate form arbitrary means drawn from | the

between-class density. The purpose of the classifier is to discriminate between genuine
and impostor comparisons.

)
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3.3.4 Continuous Classifier Performance
ThelLog Likelihood Ratio Comparison Score

Let p,. o (7, v|gen), p, (7, v|imp) denote the joint probability densities of  and v in the
genuine and impostor cases, respectively. The likelihood ratio in this case is defined by

Pr(r, vlgen)

) o) (340
We conveniently arrange r and v in a column vector z = (r,v) *. We write
1 T Cm
Pr.vjgen (T, v]gen) = me (3.41)
. 1 i
pﬁﬂimp(r, vlimp) = %\/TTp\e z (342

where Cyen and Ciyy,p, are the co-variance matrices for the genuine and imposter compar-
isons, respectively. For p,. |gen (7, v|gen), we can write

oo

pﬁ,g\gen(rvv‘gen): /p[\ﬁ(ﬂﬂ)pylﬁ(v‘:U')pg(/‘)d/" (343)

— 00

Usingthisweobtain E{r|gen} = E{v|gen} =0, E{r?|gen} = of+ 502, E{v?|gen} =

ot + 702, and E{rv|gen} = o, therefore,
2, 1 2 2
of + 70w oy,
Coon — < F > . (344)

In the impostor case, r and v are independent and

2 1 2
] o O'b —+ EO—W O
Chanp = < o e ) . (3.45)

Instead of the likelihood ratio we compute a comparison score based on the log likelihood
ratio, from which constant terms and factors have been removed:

s(r,v; No, Ny) = =2 Co llz + 270} (3.46)

gen 1mp
On substitution of (3.44) and (3.45) into (3.46) and after simplification and elimination of
constants we obtain the following expression for the comparison score

7"2 ’U2 TV

5 SR +20—E, (3.47)

S(T’U;NeaNV) = Ub+ _0-2 - 0-[2)+ O'

in which we included the number of enrolment N, and verification NV, samples as pa-
rameters. Examples of s(r, v; N, Ny,) are portrayed by contour plots in Figure 3.24 for
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(©Ne=1,Ny, =10 (d) No = 10, Ny = 10

Figure 3.24: Contour plot of the log likelihood ratio comparison score s(r, v; N, Ny)
from (3.47) with within-class and between class variance o2 = o = 1 for different
number of enrolment V., or verification IV, samples.

different number of enrolment N, or verification NV, samples with within-class and be-
tween class variance 02 = o2 = 1. Positive comparisons scores are obtained when the
{r,v}-pair is close the r = v-axis (the positive diagona line) and being further away
from the origin increases the comparison score. Negative comparisons scores are ob-
tained when the {r, v}-pair is closer the —r = v-axis (the negative diagonal line) and
increases when further away from the origin. Increasing both the number of enrolment
and verification samples shifts the zero-contour lines closer to the r = v-axis, becausethe
expected uncertainty has decreased due to the reduction of the within-class variance by
averaging multiple samples. Hence, a similar behavior can be expected when decreasing
the within-class variance directly. Increasing only the number of enrolment (verification)
samples mainly shifts the horizontal (vertical) zero-contour line closer to the r = v-axis.
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Comparison Score Density and the Classification Performance

In order to estimate the performance, first we to have to derive the density of thelog likeli-
hood comparison score s(r, v; Ne, Ny ) from (3.47), denoted asp | 4en (s|gen) for the gen-
uine case and p jimp (s/imp) for the imposter case. By combi ning (3.47) with the joint
probability density Prvlgen (7, v|gen) from (3.41) for the genuine and p,. o jimp (7, v[imp)
from (3.42) for the imposter case, respectively, we approximate the score density by
means of numerical integration of the joint probability density along the score contour.
Because s(r, v; N, Ny ) from (3.47) is derived for the univariate case, thus the score den-
Siti€s py, gen(s|gen) and p, jimp (s/imp) are for the univariate case as denoted by the j
subscript. -

For the multivariate case, when there are n independent feature components, the like-
lihood ratio equalsthe product of the likelihood ratio of each component. Because we use
thelog likelihood ratio as the comparison score, the multivariate comparison score equals
the sum of the n univariate scores defined in (3.47). Hence, the multivariate comparison
score density for the genuing pjgen(s|gen) and imposter case p,jimp (s|imp) becomes
the convolution of the univariate score density p , |gen (s/gen) and p, jimp (s[imp), respec-
tively, namely - o

Ds(s) def (Dsy * Psy * -+ - % Ds, ) (5)- (3.48)

Because the log likelihood comparison score is a similarity score, a match is returned
only when the comparison score is larger than or equal to the operating point 7". The two
error types are a match obtained at an imposter comparison known as a false match and
a non-match at a genuine comparison known as a false non-match. As the performance
measures, we use the false non-match rate (FNMR) 3(T") and the false match rate (FMR)
a(T) at the operating point 7. With the multivariate score density we can compute the
FNMR and FMR as

T
o8(T) = / Ds|gen (s|gen)ds, (3.49)
a(T) = /T Pslimp (s|imp)ds. (3.50)

Results

Figure 3.25 illustrates several examples of the approximated score density at (a) genuine
and (b) imposter comparisons for the univariate case for different number number of en-
rolment and verification sampleswith o2 = o2 = 1, and (c) their corresponding receiver
operating characteristics (ROC) curves. Similarly for the multivariate casein (d), () and
(), respectively, but for different dimensions n with o2 = 02 = N, = N, = 1. Note
that the genuine score density is symmetric at a score of zero, while the imposter den-
ity is skewed towards the negative scores. Averaging multiple enrolment and verification
samples has the effect of concentrating the genuine score density closer to zero, while
skewing the imposter score density further towards the negative values. Both effectsim-
prove the performance as observed by the ROC curves. For the multivariate case, when
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Figure 3.25: The approximated comparison score density for the univariate case with
within-class and between class variance o2, = o = 1 for different number of enrolment
N or verification N, samplesisshown (a) for thegenuinep ,en (s/gen) and (b) imposter
s, |imp(s[imp) case, and (c) portrays the corresponding ROC curves. Furthermore, for
the multivariate case is shown (d) ps; |gen(s|gen), (€) ps,jimp(slimp), and (f) the ROC
curvesfor different number of compoﬁentSn witho2 :Eg =N,=N,=1.

increasing the number of components »n the imposter score density significantly skews
and shifts to the negative values while the genuine density becomes broader but remains
symmetric. Overall, both effects combined improve the performance as illustrated by the
ROC curves.

3.3.5 Binary Classifier Performance

The theoretical performance of a binary classifier when using a bit extraction method
based on a single threshold at the background mean has been studied in [95]. For the
genuine comparisons, the average bit-error probability of component j is anaytically
determined to be equal to

(3.51)

Peefj] = 1 — Larctan (ab[j-] LB v )_2)'

The bit-error probability determines the number of bit errors or Hamming distance e be-
tween the binary vectors extracted in the enrolment and verification phase. Under the
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assumption of having independent components, the probability mass function (pmf) of e
is the following convolution

Pe(€) Qef (Pyx Pyx...%x Py )(e), (3.52)
where P; = [1 — P.[j], Pe[j]] isthe marginal pmf of the single bit extracted from com-
ponent j. Note that the number of bit errors e is a distance score and a match is obtained
when ¢ is smaller or equal to the operating point 7. Thus, the FNMR 3(T') and FMR
a(T) at the operating point 7" are defined as

Tt (3.53)
Oé(T) = zopdimp(e‘ilnp)a

wherethe bit-error probability P2 from (3.51) is used for the genuinecaseand P™ = 0.5
for the imposter case.

3.3.6 Performance Comparison

A comparison of the theoretical performances determined in Section 3.3.4 for the contin-
uous classifier and Section 3.3.5 for the binary classifier is portrayed by the ROC curves
in Figure 3.26(a) for different feature dimensionsn with o2 = o2 = N, = N, = 1,
for different number of enrolment samples N, withn = 10 and 02 = ag =N, =1in
Figure 3.26(b), and in Figure 3.26(c) for different number of enrolment and verification
samples N, = N, withn = 10 and 02 = ¢ = 1. The continuous classifier is denoted
by the prefix C, while the binary classifier is denoted by the prefix B. In all three cases
theresults clearly show that the continuous classifier outperformsthe binary classifier and
changing either the dimension » or the number of enrolment or verification samples has a
greater improvement for the continuous classifier. A drawback of the binary classifier is
that the binarization process under consideration extracts asingle bit by coarsely dividing
the feature space of a component in two regions only and therefore discarding essen-
tial information. This loss is clearly shown by the ‘n=1" ROC curve in Figure 3.26(a),
where the continuous classifier ROC curve has an infinite number of operating points and
can reach any FMR of FNMR value, while the binary classifier has only two operating
points where the smallest FMR is 50%. As observed in Figure 3.26(a), this information
loss has a snowball effect when increasing the dimension n, because the performance
of the continuous classifier has a greater improvement with increasing n than the binary
classifier performance. Extracting a single bit becomes more disadvantageous when the
within-class variance is suppressed by increasing the number of enrolment or verification
samples, or similarly having better feature components, i.e. feature components with a
larger feature quality ratio Z>. When having better feature components it may be better
to extract more bits instead of one.
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Figure 3.26: The ROC performance comparison between the continuous (denoted by C)
and binary classifier (denoted by B) for (a) different feature dimensions n with 02 =
ag = N, = N, = 1, (b) different number of enrolment samples N, withn = 10 and
02 = o2 = N, = 1, and (c) different number of enrolment and verification samples

w

N, = N, withn =10and o2 = o = 1.

3.3.7 Conclusions

The requirement to extract a binary representation from the real-valued biometric sam-
ple for several template protection schemes known in the literature raises the question
whether the bit extraction method reduces the classification performance. In this work
we compared the theoretical performance of the optimal log likelihood ratio continuous
classifier with the binary Hamming distance classifier under the assumption of Gaussian
biometric data modeled by the between-class and within-class densities with independent
feature components and including the averaging of multiple enrolment and verification
samples.

In the literature, the theoretical performance for the binary classifier consisting of a
single bit extraction method based on thresholding has been studied. Similarly, the theo-
retical performanceof acontinuousclassifier based on the log likelihood ratio comparison
scores has been analyzed, but was limited to the averaging of multiple enrolment samples
only. Hence, in this work we extended the analysis by including the averaging of multiple
verification samples. We approximated the density of the comparison score for the uni-
variate and multivariate case, from which we computed the corresponding performance
curve.

Consequently, we compared the theoretical performance of the continuous and binary
classifier and studied the effect of the number of the feature dimension and the number
of enrolment and verification samples. In all cases the continuous classifier outperforms
the binary classifier, which is expected as the likelihood ratio is the optimal classifier
if the class-conditional probability is well-known. In this work we assumed the class-
conditional probability to be well defined. In practice, however, the performance ad-
vantage of the continuous classifier will be less because it is known to be difficult to
have a perfect estimation of the class-conditional probability, especially at high feature
dimensions or correlated feature components. A drawback of the binary classifier un-
der consideration is that the bit extraction method coarsely divides the feature space of a
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component in only two regionsin order to extract asingle bit and therefore discarding es-
sential information. This drawback is amplified when the within-class noiseis suppressed
by increasing the number of enrolment or verification samples, where it may be more ad-
vantageous to extract more than one bit from each feature component.

As future work, it would be of great interest to derive the theoretical performance
of more advanced bit extraction methods that can extract more robust bits or multiple
bits from each component in order to close the gap between the continuous and binary
classifier. Furthermore, it isimportant to investigate the sensitivity of both classifiers with
respect to correlated feature components and estimation errors of the class-conditional
probability.
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3.4 Chapter Conclusions

With the first part, Section 3.2, we have shown that it is possible to theoretically deter-
mine the classification performance of the HDS based on a single bit extraction scheme
employing a single quantization threshold. Thiswas primarily accomplished by deriving
a closed-form analytical expression of the average bit-error probability of extracted bit
from a component. We experimentally validated the performance estimation using fin-
gerprint and 3D face data. The naive model assuming independent feature components
with a homogeneous within-class variance has a large deviation, which can be reduced
by incorporating the dependent and non-homogeneous feature components. Increasing
system parameters, such as the number of enrolment and verification samples, improve
the classification performance by reducing the within-class variance, and also improve
the performance estimation. The performance estimation becomes more accurate be-
cause when averaging multiple acquired biometric samples the within-class distribution
becomes more Gaussian as dictated by the central limit theorem, hence the averaged sam-
pleswill fit the Gaussian model more closely.

With the second part, Section 3.3, we have shown that the classification performance
of the unprotected templates (on continuous level) using the optimal likelihood ratio clas-
sifier is better than the performance of the protected templates using theHDSwith asingle
bit extraction scheme based on a single quantization threshold. The performance differ-
enceincreases with the feature vector dimension and the number of enrolment or verifica-
tion samples. The results are however optimistic, because we considered the naive model
of independent components with a homogeneous within-class variance, which does not
hold in practice aswe have shown in Section 3.2. In order for the likelihood ratio classifier
to be optimal the class-conditional probability of a feature vector has to be well defined,
thus an accurate estimation of the feature dependency and non-homogeneous property
is required. We conjecture that the observed difference between the protected and un-
protected performance will decrease when there are inaccuracies in the estimation of the
class-conditional probability.
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Chapter

Maximum Key Size

4.1 Chapter Introduction

In this chapter the second research question will be addressed, namely

Given the HDStemplate protection scheme: What isthe maximum key size
at a given target classification performance and system parameters?

Using the naive model introduced in Chapter 3 we determine the maximum key size by
assuming the ECC to be operating on Shannon’s bound and given the system parameters
such as the input capacity, the number of feature components, the number of enrolment
and verification samples, and the target performance. Section 4.2.3 and a great part of
Section 4.2.4 overlap with the modeling work in Section 3.2.3, and can be skipped at first
reading. We also investigate the maximum key size for the case where the model includes
fully dependent feature components and components with dissimilar feature quality. The
main results are published in Kelkboom et al. (2010) [114] .

1E. J. C. Kelkboom, J. Breebaart, |. R. Buhan, and R. N. J. Veldhuis, “Analytical template protection perfor-
mance and maximum key size given a Gaussian modeled biometric source,” Submitted to |EEE Transactions on
Information Forensics and Security, 2010.

73



74 Chapter 4. Maximum Key Size

4.2 Analytical TemplateProtection Performanceand M ax-
imum Key Size given a Gaussian Modeled Biomet-
ric Source: A trade-off between privacy, security and
convenience

421 Abstract

Template protection techniques are used within biometric systems in order to protect the
stored biometric template agai nst privacy and security threats. A great portion of template
protection techniques are based on extracting a key from, or binding a key to abiometric
sample. The achieved privacy and security depend on the entropy of the key. We focus
on the key binding method known as the Fuzzy Commitment Scheme. In the literature
it can be observed that there is a large variation on the reported key lengths at similar
classification performance of the same template protection system, even when based on
the same biometric modality and database. In this work we determine the analytical re-
Iationship between the classification performance of the Fuzzy Commitment Scheme and
the theoretical maximum key size given as input a Gaussian modeled biometric source.
We show the effect of the system parameters such as the biometric source capacity, the
number of feature components, the number of enrolment and verification samples, and
the target performance on the maximum key size. We also show that a trade-off exists
between the privacy and security of the Fuzzy Commitment Scheme and its convenience
for its subjects. Furthermore, we provide an analysis of the effect of feature interdepen-
dencies and differencesin their quality. Finally, we analyze these findings on the MCYT
fingerprint database using two feature extraction algorithms.

4.2.2 Introduction

A biometric system consist of an enrolment and verification phase. In the enrolment
phase, a biometric sample is captured from which a reference template is created and
stored. In the verification phase, a new biometric sample is captured and compared with
the stored reference template. The subject is considered as being genuineif the new bio-
metric sampleis sufficiently similar to the stored reference template. In recent years, the
interest in biometric systems has significantly increased. Examples are the planned in-
troduction of the United Kingdom National Identity Card based on biometrics required
by the Identity Cards Act 2006 [8] or the recommendation by the International Civil Avi-
ation Organization (ICAO) [9] to adopt the ePassport that also includes biometric data.
The widespread use of biometrics and its necessity of storing a reference template intro-
duces new security and privacy risks such as (i) identity fraud where an adversary steals
the stored reference template and impersonates the genuine subject of the system by some
spoofing mechanism, (ii) limited-renewability implying the limited capability to renew a
compromised reference template due to the limited number of biometric instances (for
example we only have ten fingers, two irises or retinas, and a single face), (iii) cross-
matching linking reference templates of the same subject across databases of different
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applications, and (iv) (sensitive) medical information leakage whereit is known that bio-
metric data may reveal the gender, ethnicity, or the presence of certain diseases.

The field of template protection is focused on mitigating these privacy risks by de-
veloping template protection techniques that provide (i) irreversibility implying that it
isimpossible or at least very difficult to retrieve the original biometric sample from the
reference template, (ii) renewability where it is possible to renew the reference template
when necessary, and (iii) unlinkability which prevents cross-matching. The field of tem-
plate protection is relatively young, however there is a significant interest to successfully
develop and implement these techniques as shown by their prominent position within the
European projects 3DFace [30] and TURBINE (TrUsted Revocable Biometric IdeNti-
tiEs) [31] from the 6th and 7th Framework Programme, respectively, and the great interest
from privacy offices such as the Office of the Information and Privacy Commissioner of
Ontario [32].

Overview of the Template Protection Field

Asdescribedin Jain et a. (2008) [49], the template protection techniques proposed in the
literature can be divided into two categories, namely (i) feature transformation and (ii)
biometric cryptosystems. The most common technique based on feature transformation
is known as Cancelable Biometrics [58, 61]. With cancelable biometrics, the reference
templateis generated by applying a non-invertible transformation on the enrolment sam-
ple. Due to the non-invertible property of the transformation it is impossible to obtain
the original biometric sample from the reference template. In the verification phase, the
same non-invertible transformation is applied on the verification sample, and the match-
ing is thus performed on the transformed version of both the enrolment and verification
sample. Biometric cryptosystem techniques can be sub-divided into (1) key binding and
(2) key generation methods. In the enrolment phase, the key binding techniques com-
bines the key with a biometric sample into auxiliary data as such that the same key can
be successfully released in the verification phase. The key release process in the verifi-
cation phase uses a new biometric sample and the stored auxiliary data. Examples of the
key binding techniques are the Fuzzy Commitment Scheme (FCS) [36], the Helper Data
System (HDS) [48], the Fuzzy Vault [80]. Key generation techniques extract a robust key
from the biometric sample in the enrolment phase, with auxiliary data if necessary. In
the verification phase the same key has to be extracted using a new biometric sample and,
when available, the auxiliary data. Fuzzy Extractors are the most common key generation
techniques, which can be created using Secure Sketches [115].

Privacy and Security, and Convenience

It is known from the key binding technique that given the protected template, an adver-
sary could retrieve the binary vector extracted from the biometric sample by randomly
guessing the key and inverting the key binding process. Compromising the binary vector
facilitates a possible replay or cross-matching attack and is therefore clearly a security
and privacy breach, respectively. Besides the cross-matching privacy breach, the binary
vector could also reveal sensitive or medical information of the subject. Therefore, the
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achieved privacy and security protection depends on the entropy of the key. Considering
the key to consist out of independent and uniform hits, its entropy is then determined by
its size. Having akey of k. bits on average will take 2% —! guessesin order to obtain the
correct one, hence adding a single bit to the key doubles the adversary’s effort.

On the other hand, the classification performance of the template protection system
also determines the effort of inverting the key-binding process. In the remainder of this
work we refer to the classification performance of the template protection system as the
system performance. The system performance can be expressed by the false match rate
(FMR) and the false non-match rate (FNMR). The FMR is the probability of incorrectly
classifying the biometric samples from two different subjects as similar and genuine,
hence leading to a false match. Thus, the FMR aso indicates the likelihood of find-
ing a random biometric sample from an existing database that will lead to a match and
therefore a security breach, which is also known as the FMR attack. The work of Ko-
rte and Plaga (2007) [116] describes a relationship between the FMR and the key size,
namely k. < —log,(FMR). Furthermore, the FNMR is the probability of incorrectly
classifying two biometric samples from the same subject as different or imposter, thus
leading to a false non-match. We consider the FNMR as part of the convenience factor
of the biometric system, because it determines the probability that subjects have to re-
peat the verification process which is considered as an unpleasant experience. It is also
known that increasing the FNMR usually results into an decrease of the FMR, and there-
fore a possible increase the key size. Furthermore, acquiring multiple biometric samples
will improve the performance as shown in Kittler et. a (1997) [117], Faltemier et al.
(2008) [118], and Kelkboom et al. [97], but is likely to be considered as inconvenient by
the subjects. Hence, both the FNMR and the number of samples do influencethe key size,
hence showing a possible trade-off between the privacy and security and the convenience
of the template protection system.

Reported Performanceswith Corresponding Key Size

In the literature, there is a significant variability in the reported key size with respect to
the system performance. Table 4.1 shows an overview of the reported system perfor-
mance and key size for different template protection techniques, databases and feature
extraction methods. It is difficult to find a relationship between the system performance
and the key size. For example, consider the cases 6 and 11 that use the same template
protection technique and modality, and a similar database. While having similar reported
performance, the key sizein case 11 is almost three timeslarger than in case 6. Likewise,
when comparing the cases 2c and 10a with similar template protection technique, modal-
ity, and database, the key size reported in case 10ais almost double of the one of case 2c.
As last example, the separate cases 7 and 10 show that using exactly the same template
protection technique on the same modality but different database may lead to a different
performance at an equal key sizeasin case 7 or different key sizes at similar performance
asin case 10. Hence, in practice there seems no clear relationship between the system
performance and the key size.
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Related Work and Contributions

We are interested in determining the relationship between the maximum key size and
the system performance and investigate the influence of the system parameters such as
the input capacity, the number of feature components, and the number of enrolment and
verification samples.

An analysis about the maximum key size given a discrete biometric source is done
in Ignatenko and Willems (2009) [122] (which is an extended version of Ignatenko and
Willems (2008) [123]) and a similar work of Lai et a. (2008) [124], where they esti-
mated the secret-key rate. The work of Willems and Ignatenko (2009) [38] analyzed the
secret-key rate for a Gaussian distributed continuous biometric source. The framework
of these works assumes that if the number of feature components goes to infinity, the
discriminating power of each component remains constant. Assuming independent fea-
ture components, thiswould imply that the biometric source has an infinite discriminating
power. Thiswould not hold for a biometric system, where the discriminating power of a
biometrictrait islimited dueto its practical nature, namely measurement noise or biomet-
ric variability.

In our work we fix the discriminating power of our Gaussian model ed continuous bio-
metric source, referred to as the input capacity, and distribute its discriminating power
among the feature components. We present five contributions. Firstly, we analytically
determine the classification performance of the Fuzzy Commitment Scheme where the
input is a Gaussian modeled biometric source. We aso include the number of enrolment
and verification samples. Secondly, from the estimated performance we analytically de-
termine the theoretical maximum key size at the operating point determined by the target
FNMR, assuming an ECC with decoding capabilities at Shannon’s bounded. We also
verify the known relationship between the maximum key size and the FMR and illustrate
the gap when errors have to be corrected. Thirdly, we investigate by means of numerical
analysisthe effect of the parameters such as the Gaussian capacity of the biometric source,
the number of enrolment and verification samples, and the target FNMR on the maximum
key size. Fourthly, we provide an analysis of the effect of feature interdependencies and
differencesin their quality. Finally, we anayze these findings on the MCY T fingerprint
database using two feature extraction algorithms.

Outline

The outline of this paper is as follows. We briefly describe the FCS construction in Sec-
tion 4.2.3. In Section 4.2.4 we present the analytical framework that model s the biometric
source as parallel Gaussian channels. Furthermore, we derive the analytical system per-
formance and the theoretical maximum key size. Section 4.2.5 illustrates by means of
numerical analysis the effect of the system parameters, feature interdependencies and
differencesin their quality on the maximum key size. The experimental setup using the
MCY T database and the obtained results are discussed in Section 4.2.6. Our final remarks
and conclusions are given in Section 4.2.7.
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Figure 4.1: The FCS construction combined with a Bit Extraction module.

4.2.3 Fuzzy Commitment Scheme

The FCS construction combined with a Bit Extraction module is depicted in Figure 4.1.
Note that the FCS is considered to be a key-binding technique. In the enrolment phase
or the key-binding process, the real-valued column feature vector f¢ € RV¥ is extracted
from each of the NV, biometric enrolment samples by the feature extraction algorithm. A
single binary column vector 5 € {0, 1}V is created from the mean of the N, feature
vectors within the Bit Extraction module, which we will discuss in Section 4.2.4. In
context of template protection, the work of Kelkboom et a. (2009) [125] shows that
multi-sample fusion at feature level, i.e. taking the mean of the multiple samples, has
the greatest advantage in terms of security and privacy, and also storage requirements,
while the performance is close to the optimal found at score-level fusion. Furthermore,
arandomkey K € {0, 1}* is created and encoded by the ECC Encoder module into a
codeword C € C of size {0,1}", where C is the ECC codebook (the set of codewords).
As the key-binding method, the codeword is XOR-ed with the binary vector f §, creating
the helper data AD also referred to as the Auxiliary Data in Breebaart et al. (2008) [102],
which is in line with standardization activities in 1SO [25]. AD is stored as part of the
protected template together with the hash of K, which is referred to asthe Pseudonymous
Identifier (Pl). Because of the XOR operation and the fact that a single bit is extracted
from each feature component, it implies that the size of the extracted rea-valued and
binary vector are equal to the codeword size, namely n. = N, and in the remainder of
thiswork we will only use n..

In the verification phase or the key-release process, the binary vector f is created by
guantizing the mean of the NV, verification feature vectorsf™. Hereafter, the auxiliary data
AD is XOR-ed with £ resulting into the possibly corrupted codeword C *. Decoding C*
by the ECC Decoder module leads to the candidate secret K *. The candidate pseudony-
mous identifier Pl * is obtained by hashing K*. A match is returned by the Comparator
module if Pl and PI™* are equal, which occurs only when K and K* are equal, i.e. the
key-released process was successful.

The key-binding and key-rel ease process can be modeled by a binary symmetric chan-
nel (BSC) as portrayed in Figure 4.2, where the error pattern e = f5 @ £y of weight
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Figure 4.2: Modeling the key binding and release process by a Binary Symmetric Chan-
nel.

e = |le|| = du(f§, f3) corrupts the original codeword used in the key-binding process.
The bit-error probability P, which is the probability that a bit of e is‘1’, determinesthe
number of bit-errorsthat have to be corrected by the ECC Decoder and therefore also the
system performance. The bit-error probability depends on the quantization method being
used, the quality of the features, and the number of samples (see Section 4.2.4) and is
different for imposter and genuine comparisons.

4.2.4 The Analytical Framework

In this section we present the analytical framework for modeling the biometric source,
guantization method, system performance, and the maximum key size that can be ex-
tracted. An overview of this framework is depicted in Figure 4.3. The Source Modeling
module models the biometric source from which the enrolment and verification feature
vectorsf are derived. Given theinput capacity C';,, and the number of feature components
n. asit parametersthe Source Modeling module outputs the quality of feature component
j defined by the within-class and between-class standard deviation ratio ;‘z—[[g]] referred to
as the feature quality. With the quantization method under consideration, the number of
enrolment N, and verification IV, samples, and the feature quality Zii[é]] , the Quantization
modul e estimates the bit-error probability of the extracted bit from feature component j
at genuine P$°[j] and imposter P™[;] comparisons. Knowing the bit-error probabilities
the Performance Estimation module estimates the analytical system performance defined
by the false match rate (FMR) «(7T") and the false non-match rate (FNMR) 5(T') at al
possible operating points 7. Given the system performance and the target FNMR (.,
the maximum extracted key size k is determined in the Maximum Key Size module. In
the remainder of this section we discuss each module in more detail.
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Figure4.3: Anoverview of the framework used to model the biometric source defined by
thefeature quality ;’z“]]} of the j-th component, the resulting bit-error probabilities P £°[j)

and P™[j], the corresponding performance defined by the FMR «(T') and the FNMR
B(T) at the operating point 7', and the maximum key size k* that can be extracted.

Biometric Source M odeling with Parallel Gaussian Channels

The input of the FCS template protection system is a real-valued column feature vector
£ = [f[1], f[2],..., f[ne]]" of dimension n., where* '’ is the transpose operator. The
feature vector f is extracted from a biometric sample by the feature extractor and is likely
to be different between two measurements, even if they are acquired immediately after
each other. Causes for this difference include sensor noise, environmental conditions and
biometric variabilities. To model these variahilities, we use the Parallel Gaussian Chan-
nels (PGC) as portrayed in Figure 4.4(a). This approach has been successfully used on
estimating the performance of two biometric databases in Kelkboom et al. (2010) [95].
We assume an ideal Acquisition and Feature-Extraction module which always produces
the same feature vector p,; for subject i. Such ideal module is thus robust against all
aforementioned variabilities. However, the variability of component ;5 is modeled as an
additive zero-mean Gaussian noise w(j] with its pdf p.p;;,; ~ N(0, afm-[j]). Adding the
noise w(j] with the mean 1;[7] results into the noisy feature component f;], in vector
notation f = p; + w. The observed variability within one subject is characterized by the
variance of the within-class pdf and is referred to as within-class variability. We assume
that each subject has the same within-class variance, i.e. homogeneous within-class vari-
ancec? ,[j] = o2 4], Vi. We also assume the noise to be independent across components
7, subjects i, and across measurements. Hence, the feature vector extracted from each
biometric sampleis eguivalent to retransmitting 1, over the same PGC channels.

Each subject should have a unique mean in order to be distinguishable. Across
the population we assume p;[j] to be another Gaussian random variable with density
poij] ~ N(uwlj], oflj]). The variability of y;[j] across the population is referred to as
the between-class variability. Figure 4.4(b) shows an example of the within-class and
between-class pdfs for a specific component and a given subject. The total pdf describes
the observed real-val ued feature value f ;] across the whole population and is also Gaus-
sian with e ~ N (ue[j], 02 [j]), where 1 [j] =[] and o2[j] = 02 [j] + o2[;]. For
simplicity but without loss of generality we consider i+ [j] = ub[j] = 0.

The capacity of each channel is given by the Gaussian channel capacity C'¢[j] as
defined in Cover and Thomas (1991) [126]

11 oulj] ) ?
Calj] = 4 log, (1+ (28) > (4.1)
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Figure 4.4: (a) The Parallel Gaussian Channels modeling the real-valued features and (b)
the within-class, between-class and the total density and the quantization method based
on thresholding.

which in fact states that a maximum of C¢[4] bits could be send per transmission. Note
that the Gaussian channel capacity only depends on the ratio 2 [JJ]} and in Section 4.2.4
we will also show that the bit-error probability P, depends on thIS ratio. Therefore, we
can define the ratio g;[é] as the feature quality of component j and taking its inverse of
(4.1) we obtain

2ol = /9206l -1, (4.2)
wherethe relationship is graphically represented in Figure 4.5(a).

With the capacity of feature component j to be equal to the Gaussian channel capacity
Clj], we can define the total capacity of the input biometric source C';,, as the following
sum

N

Cin = 2. Caljl- (4.3)

j=1

The input capacity C;,, thus represents the amount of discriminating information in abio-

metric sample across the whole population and is distributed among the n . components.
In this work, we will analyze the difference between a uniform and a non-uniform distri-

bution of Cj,. If the input capacity is uniformly distributed among the n . components,
con%quently giventheinput capacity C',, the Gaussian capacity of each component C g [5]
isequal to in By substituting C[j] = ?1_ in (4.2) the feature quality parameter - is
defined as ) N

on —\[oT 1, (4.4)
andisalso equal for each component. Thus, for this special case of auniformly distributed

input capacity, (4.4) gives the relationship between the input and output parameters of the
Source Modeling module. In all other cases, (4.2) and (4.3) determine these properties.



4.2. Analytical Template Protection Performance and Maximum Key Size given a
Gaussian M odeled Biometric Source: A trade-off between privacy, security and
convenience 83

Quantization Module based on Thresholding

Figure 4.4(b) depicts the quantization method under consideration, which is abinarization
method based on thresholding, where the mean of the total density 1 is taken as the
threshold [33-35]. If the real-valued feature is larger than the threshold, then a bit of
value ‘1’ is allocated, otherwise ‘0’. To estimate the analytical system performance we
need to estimate the bit-error probability P.[j] for each component j at imposter and
genuine comparisons. In thissection we anaytically estimate P.[j] given the quantization
scheme, the feature quality 2 J] , and the number of enrolment N, and verification IV,

samples.

Imposter Bit-Error Probability Pi™[j] Atimposter comparisons, each bitiscompared
with the bit extracted from arandomly selected feature value from the total density. Be-
cause 1 isthe binarization threshold, there is a 50% probability that a randomly selected
bit from the whole population will be equal, hence PI™[j] = 1. Note that both the num-
ber of enrolment and verification samples do not have an influence on P ™[], and Pi™ 5]
is equal for each component.

Genuine Bit-Error Probability P£°[j] At genuine comparisons, the analytical bit-
error probability P%°[;j] has been derived in Kelkboom et al. (2008) [97], namely

Pe°[j] = 3 — L arctan (Z:V[[; v ),
\/N N+ (22

(4.5)

[J]

where it can be seen that the standard deviation ratio 2> [j] (the feature quality) and the
number of enrolment NV, and verification N, samples determl ne P#°[;j]. Notethat Pg°[5]
is the average hit-error probability across the population. Some subjects have a larger
bit-error probability because their mean 1.;[j] is closer to the quantization threshold .+ [5],
while others have asmaller bit-error probability because their mean is further away. How-
ever, for estimating the analytical system performance across an infinite number of sub-
jects, it is only necessary to compute the average bit-error probability as shown in Kelk-
boom et a. (2010) [95]. Substituting (4.2) into (4.5) we obtain

20G
%arctan( (Gl 1>NSNV) 1). (4.6)

gelr] —=
Pe [j] \/N5+NV+(220G[11—1 —

1
2

With (4.6) it is easy to show that Pg° for the N. = N, = 2X case converges to the
{Ne = oo, N, = X} casewhen CG[ i] and thus the feature quality becomes larger as

such that (22¢<ll — 1) < X. Figure 4.5(b) depicts the bit-error probability Pg° as
afunction of C¢ for different settings of NV, and N, as defined by (4.6). By increasing
N,, P5° decreases because the bits extracted in the enrolment phase are more stable.
However, when increasing N, further to infinity, P#° stays close to the No = N, = 2
case and converges when C increases. To further decrease P2g¢ it is thus necessary to
alsoincrease N,.
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C¢ and (b) the genuine bit-error probability Pg¢ as afunction of C' for different values
of the number of enrolment V. and verification N, samples.

For the special case where the input capacity is uniformly distributed anong the . .
componentsthe feature quality Z;—[[jg]] is equal for each component and therefore P£°[j] is
equal for each extracted bit. By substituting (4.4) into (4.5) we obtain

204y
(2 ne —1) NNy

pege =1 _ Lagrctan . 4.7
e 2 ™

2Cin -1
Ne+No+ (2 e 71)

System Performance

In Section 4.2.3 we have modeled the FCS template protection system as a binary sym-
metric channel with bit-error probability P,.[j]. The bit-error probability determines the
probability mass function (pmf) of the number of bit errors or Hamming distance ¢ =
du(fg, £5). Aspresented in Kelkboom et al. (2010) [95], the pmf is defined by the con-

volution

def e v

= P{du(fg, f5) = €} (4.8)
=(PLxPyx...xP,)(e),

¢(e)

where P; = [1 — B, [j], P.[j]] isthe marginal pmf of the single bit extracted from compo-
nent 5. A toy exampleisdepictedin Figure4.6. Thetoy example showsthe marginal pmf
at comparisons between the enrolment and verification bits f§[1] and f3[1], respectively.
Taking the convolution of al marginal pmf leads to the pmf of the Hamming distancee.
For the specia case where the input capacity is uniformly distributed across the n .
components and therefore P,[j] is equa for each component, the convolution in (4.8)
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Figure 4.7: The false match rate (FMR) and the false non-match rate (FNMR) given the
probability mass function of the number of errors e at imposter and genuine comparisons.

becomes abinomial pmf Py, (e; N, p) as discussed in Daugman (2003) [104]
Py(e;N,p) = (V)p(1 —p)N =9, (4.9)
with dimension N = n. and probability p = P..

False Match Rate The false match rate (FMR) depends on the pmf of the Hamming
distance e at imposter comparisons, where we have the bit-error probability Pi™ that
is equal for each extracted bit. Therefore, the pmf of the Hamming distance ¢ is the
binomial pmf with p equal to P.i™. Hence, the FMR at the operating point 7', o(T'), isthe
probability that e is smaller or equal to T' (see Figure 4.7), namely

a(T) e P{e < T | imposter comparisons}
T
=3 Py(isne, P
;O b ( ) (4.10)

-2 32 (3).
=0
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False Non-Match Rate In general, P2¢ isnot equal for each bit and therefore the pmf
of the Hamming distance ¢ at genuine comparisonsis defined by the convolution of (4.8)
with marginal pmf’s P3¢ = [1 — P#°[j], P£°[j]]. Hence, the false non-match rate at the
operating point 7', 3(T), isthe probability that ¢ islarger than T' (see Figure 4.7), namely
B(T) < P{e > T | genuine comparisons}
= 3 (PEx«P¥ k... x PE)(i). (412)
i=T+1 ¢

For the specia case where the input capacity is distributed uniformly among the n . com-
ponents, the pmf of ¢ is defined by the binomial pmf with probability p = P £°, namely

N

BT) = > Pulisne, PE). (4.12)
i=T41

Maximum Key Size

In this section, we determine the theoretical maximum key size or message length that
can be transmitted given the BSC depicted in Figure 4.2 with bit-error probability P. and
assuming an optimal binary ECC that corrects up to ¢. errors with decoding properties
defined by Shannon’s bound. We determine the maximum key size at the operating point

determined by Shannon’stheorem, at the operating point where the equal -error rate (EER)

is achieved, and at the operating point determined by the target FNMR, (3.,. The EER
is the performance achieved at the operating point where both the FMR and the FNMR
are egual. Note that we assume an ECC code that considers the bit-error probability to be
equal for each bit, hence we have a Hamming distance classifier with equal weights.

Operating Point from Shannon’s Theorem With the code rate R equal to the ratio

of the key size and the codeword size, fj— Shannon’s theorem shows that there exists a

decoding technique that can decode the EOrrupted codeword with a bit-error rate p with
an arbitrary small probability of a decoding error when

R < C(p) (4.13)
for asufficiently large value of n.., where C(p) is the channel capacity defined as
C(p) =1- h(p), (4.14)
with h(p) being the binary entropy function (see Figure 4.8(a))
h(p) = —plogyp — (1 — p) logy(1 — p). (4.15)
Hence, the key size k. has an upper limit given by Shannon’s bound with p = PS¢ as
ke =ncR < n.C(P2°). (4.16)

Note that this bound only holds under the assumption that n . is sufficiently large. With
use of (4.6) we have the relationship between the Gaussian channel capacity C' ¢ and
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Figure 4.8: The (a) binary symmetric channel (BSC) capacity as a function of the bit-
error probability p, (b) the BSC capacity C'(P£°) as a function of the Gaussian capacity
per channel C¢ at different values of the number of enrolment N, and verification N,
samples, and (c) the key extraction efficiency defined astheratio —~=—= C(P oy

the BSC channel capacity C'(P#°) asillustrated in Figure 4.8(b) for different number of
enrolment N, and verification IV, samples settings. Increasing the number of samples
improves the BSC channel capacity C'(P£°) because of the decrease of the genuine bit-
error probability P2°. We also portray the key extraction efficiency defined as the ratio
%@ in Figure 4.8(c). Thus, with asingle enrolment and verification samples, it is only
possible to extract ~ 24% of the Gaussian channel capacity C'¢ and thus aso from the
input capacity C;,,. The efficiency can be significantly improved by increasing the number
of enrolment or verification samples, consequently shifting the optimum at asmaller C .

In practice, however, n. is not large. As described in Daugman (2003) [104], the
intrinsic degrees of freedom of the binary iris code is 249, which has been derived by
fitting the imposter Hamming distance pmf with abinomial pmf with probability p = 0.5
and di mension N = 249. A toy example of the achieved FNMR when choosing the
operati ng, = 0.2 closeto P2°¢ = (.19 as stipulated by Shannon’stheorem for different
values of n. is depicted in Figure 4.9. At alarge codeword size of n. = 10000 bits the
achieved FNMR is0.6%, which is acceptable. Note however that the FNMR significantly
increases once n. decreases, namely 22.1% and 43.9% at n. = 1000 and n. = 100 bits,
respectively. Hence, with iris having 249 independent bits and is known as one of the best
biometrics modality, we can conclude that the codeword size is expected to be too small
and not fulfilling the requirement of Shannon’s theorem. To lower the FNMR we have to
correct more bits. In the following section we describe two aternative operating points,
namely at the EER operating point or at the target FNMR Sy,

The EER Operating Point with Gaussian Approximation Inordertofind ananalytical
expression of the EER operating point, T'g g r, We approximate the binomial density used
for modelling the pmf of the Hamming distance e by a Gaussian density. The EER oper-
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Figure4.9: A toy example of the achieved FNM R when choosing the operating, % =0.2
closeto P& = 0.19 as stipulated by Shannon’s theorem for different values of ﬁc. The
solid (blue) curve portrays the pmf of the Hamming distance e at genuine comparisons,

while the dotted (red) curves depicts the pmf at imposter comparisons.

ating point in terms of P5° becomes

Tepr — V Pt (1 PE) + P (4.17)
DN e

wherethe complete derivationis presented in Section 4.A. Notethat the relative operating
point TZE2 and thus the BSC channel capacity at the EER operating point C( T2££2) is
fully determ| ned by Pg°. By combing (4.6) with (4.17) we obtain therelationship between
the Gaussian channel capacity C'¢ and C(TEER) for different number of enrolment N,

and verification IV, samples as depicted in Figure 4.10(a). Using more samplesimproves
the key extraction efficiency as portrayed by Figure 4.10(b). However, the key extrac-

tion efficiency at the EER operating point is much smaller than the efficiency achieved at
the operating point stipulated by Shannon’stheorem. This differenceis portrayedin Fig-

ure 4.10(c) by theratio C'(£222) /C(P#°), where it shows that within this range of C,
N, and Ny, the key extraction effici ency at the EER operating point is between 25-55%
of the efficiency at Shannon’s operating point. Thisreduction is caused by the fact that we
forcethe FNMR to be equal to the FM R, hence significant more bits have to be corrected,
conseguently limiting the channel capacity. Therefore, in practice, the EER operating
point may not be ideal in terms of performance. As aresult, we discuss in the following
section an alternative method where the operating point is determined by atarget FNMR

ﬂtar-

Operating Point at the Target FNMR 5;,, We have shown that Shannon’stheory leads
to an optimistic upper bound with a high FNMR, while the EER operating point may not
be the ideal operating point of a biometric system in terms of FMR, which consequently
leadsto asmaller maximum key size. In this section we present a different operating point
determined by the target performance, namely the target FNMR, (... Hence, instead of
correcting t, = n.P2® or Tggr bits, we will correct t. = T}, bits, where T, isthe
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Figure 4.10: The (a) BSC channel capacity at the EER operating point C( TEER) asa
function of the Gaussian channel capacity C'¢ at different valuesof N, and IV, withits key
extraction efficiency defined as C( =2 TEER )/Cc depictedin (b). Furthermore, (c) illustrates
the ratio between the key extractlon eff|C|ency obtained when using the operating point
from Shannon’s theory and at the EER point, namely the ratio between C( Tfl’fﬂ) and
C(Pg°).

operating point in order to reach 5y,,, namely
Tta'r‘ = arg I%ln(lﬁ(T) - ﬁtar')' (418)

Hence, the theoretical maximum key size assuming an ECC at Shannon’s bound with
p = Tt2= isthen equal to

kr X n0 (T;L—) = e (1 “H (T;l—)) . (4.19)

Because T“" is larger than P2° and will not exceed 3, we know that k will be smaller

than the upper bound n C(Pge) from (4.16). However if Biar IS Iarger than the EER
then &7 will be larger than C'( ~221 TEER ). Thus, the key extraction efficiency depends on the
target FNMR, however if G, g 50% the key extraction efficiency should be between
the one from Shannon'’s theory of Figure 4.8(c) and from the EER operating point of
Figure 4.10(b).

We have defined the maximum key size k7, which we will use in the remainder of
thiswork. In the following section, we study the effect of the system parameters of the

framework shown in Figure4.3on k.

Relationship between the Maximum Key Size k7 and the Target FMR ay, The
work of Korte and Plaga (2007) [116] showed the relationship between the key size k .
andthe FMR to be k. < —log,(a(T")) by using the Hamming bound theorem. Namely,
from theorem 6 on Page 19 in MacWilliams and Sloane (1977) [127] (The sphere packing
or Hamming bound) states: A ¢.-error binary code of length n. containing M codewords
must satisfy

M (14 (%) 4+ (%) + .o+ (7)) < 2me. (4.20)
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With the FMR defined in (4.10) as (7)) = 27" ) (7,T> with t. — T and M — 2%, we
=0
obtain
ke < —logy(a(T))
S - 1Og2 (atar)a Wlth T = Ttar, (421)

where we define the FMR at the target operating point 7', as ... Thus, we have two
upper boundsfor thekey size, namely log 5 (at,, ) from the Hamming bound theorem from
(4.21) and k£ from Shannon’s theorem from (4.19). We compare the difference between
the two bounds (— log, (aiar) — k) as a function of the relative operating point - at
a fixed number of components n., as illustrated in Figure 4.11 for different n . setti ﬁgs.
We observe that if no errors have to be corrected, 7' = 0, then there is no difference
because (— log, (atar) — k) = 0. However, if errors have to be corrected we observed a
difference, where its maximum is around T“" = 0.2. A larger maximum is observed for
larger n. values. A rule of thumb we could use is that the maximum difference increases
with 0.5 bits when doubling 7.

Hence, — log, (atar) 1S @an upper bound of the key size k. at the target operating point,
however it is larger than the maximum key size & upper bound derived from Shannon’s
bound when errors have to be corrected. Furthermore, the difference between the two
bounds increases when there are more components.

4.25 Numerical Analysisof the System Performance and the M axi-
mum Key Size

By means of a numerical analysis we illustrate the effect of the system parameters on
both the system performance and the theoretical maximum key size k. As the system
parameters we have the input capacity Ci,,, the number of components .., the number of
enrolment N, and verification N, samples, the target FNMR S;.,, and the target FMR
iar- 1IN Section 4.2.5 we analyze the case where the input capacity C;, is uniformly
distributed among the n. components|eading to feature componentswith an equal feature
quality. On the other hand, we consider the case where the components have unequal
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feature qualities due to the non-uniformly distribution of C';,, in Section 4.2.5. In Section
4.2.5 we conclude with the analysis of dependencies between the feature components.

Biometric Sourcewith Equal Feature Quality

System Performance First, weillustrate the effect of equally distributing a fixed input
capacity Cj, among a different number of components n . on the system performance,
henceit holdsthat the Gaussian channel capacity for equal componentisequa to C'¢[j] =
2_ . We present the system performancewith the receiver operating characteristics (ROC)
curve, where the detection rate 1- 3 is displayed as afunction of the FMR «. For different
settings of n., Figure 4.12(a) portrays the ROC curves obtained for the casewhen C'y, =
50 bits and Figure 4.12(b) depicts the obtained FMR «y,, at the target FNMR Sy, =
5%. Thetarget FMR is computed by first estimating the operating point 7', defined by
(4.18), then determining the FMR on that operating point. Note that the operating point
determinesthe number of errorsthat haveto be corrected and can only beinteger numbers.
The target FNMR will most likely not be achieved precisely on an integer number, and
some interpolation method has to be used in order to obtain a more precise (fractional)
operating point. A simple linear interpolation between the closed two integer values can
be used, however we have noticed that the obtained results such as in Figure 4.12(b)
may have a high degree of fluctuations. Therefore, we take the linear interpolation of the
logarithm of both the FMR and FNMR in order to have a more accurate estimate.

Figure 4.12 shows that the system performance dependson n... If n. istoo large or
too small the performance deteriorates and hence is not optimal. At smaller n . values,
the genuine bit-error probability P&° will be smaller, because the capacity per component
increases due to the fixed input capacity assumption. However, the number of subjects
that can be distinguished reduces as well. In a perfect system where Pg¢ = 0, it is only
possible to distinguish 2™ subjects without any errors. As a consequence, significantly
decreasing n. will degradethe system performance. On the other hand, at larger n . values
it is possible to distinguish more subjects, but P£¢ increases due to the overall constant
input capacity Cy,, leading to a system performance deterioration. Consequently, for each
{Cin, Ne, N, } setting we determine the optimal number of componentsn  leading to the
minimum ., and use the corresponding ROC curve for comparison between different
settings.

With the optimal number of components n determined, Figure 4.13(a) depicts the
ROC curve at different input capacity C;, settings, while Figure 4.13(b) shows the ROC
curve at different number of enrolment N and verification IV, settings with Cy,, = 40
bits. The figures show that the ROC improves when either increasing C'i,,, Ne, Or Ny.
The most significant performance improvement is obtained when increasing both N, and
N,.

Maximum Key Size with Fixed Number of Components Having shown the effect
of the {Ciyn, ne, No, Ny } parameters on the ROC performance curve, we will now illus-
trate the effect of the {Siar, Ne, N, } parameters on the maximum key size k£ and the
relative operating point T’"T given a fixed input capacity C;, = 40 bits un|formly dis
tributed among n. = 12 components The influence of the target FNMR (., is shown
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Figure 4.12: For different number of components n ., (@) the obtained ROC curves with
an input capacity of C;, = 40 bits and a single of enrolment and verification sample, and
(b) the obtained FMR ¢, at thetarget FNMR B3y, = 5%.
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Figure 4.13: (a) ROC curve for the input capacity at Ci, € {40, 50,60, 70,80} and (b)
the ROC curve for different number of enrolment NV, and verification N, samples with
input capacity C;, = 40 bits. In both cases the optimal number of components n* is
determined and used for each settings, and the target FNMR is at 3., = 5%.

in Figure 4.14(a) for the maximum key size and in Figure 4.14(c) for the relative oper-
ating point. Increasing S:., decreases the number of components to be corrected, hence
decreasing the relative operating point and therefore increasing the maximum key size.
The maximum key size converges towards the number of componentsn .. Increasing the
number of samples reduces the bit-error probability and therefore decreasing the relative
operating point and consequently increasing the maximum key size. Increasing both the
number of enrolment and verification samples has agreater increase on the maximum key
size which convergestowardsn...

Maximum Key Size with Optimal Number of Components In Section 4.2.5 we have
shown the effect of the {Sar, Ne, Ny} parameters on the maximum key size k* where
we considered the input capacity C;, and the number of components n . to be fixed. We
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Figure 4.14: The influence of the target FNMR (., on the (a) maximum key size k7
and (c) the relative operating point T;L—“ and similarly the influence of the number of
enrolment N, or verification IV, samplesin (b) and (d), respectively.

will now illustrate the effect of the {Ciy, Bar Ne, Ny } parameters on the maximum key
size k¥ considering the case where the optimal number of components» }: is determined
given the parameter setting as discussed in Section 4.2.5. First, we dISCUS the effect of
{Cin, Biar } followed by the effect of {Cy,, Ne, Ny }.

Figure 4.15(a)(b) portray the effect of the target FNMR (., and the input capac-
ity Ci, on the maximum key size k} with a single enrolment and verification sample
N, = N, = 1, where Figure 4.15(a) depicts &} as afunction of C;, with different 5,
settings and Figure 4.15(b) shows & as a function of (.., with different C;,, settings.
Similarly, the effect of 5., and Cj, on the relative operating point Tfm and the optimal
number of components ¥ are illustrated in Figure 4.15(c)(d) and Flgure 4.15(e)(f), re-
spectively. The results show that increasing either the input capacity C';,, or the target
FNM R Btar increases the maximum key size k* and the optimal number of components

, but decreases the relative operating point Tf‘“ . Both the increase of n} and the de-

crease of T“" have a positive effect on the maX|mum key size k. Doubling B;a, from
10%to 20% on average adds around 2 bitsto £ *, but from 2.5% to 5% on average adds
1 bit. Furthermore, doubling C;,, roughly doubleﬁ k for the case when (iar = 20% and
almost triples for the case when (., = 2.5%. Also, Figure 4.15(b) shows that if Gy, IS
small, namely < 5%, there is a significant drop of &£} when (3., decreases further. At
smaller ;.. it isrequired to correct more bits (as shown in Figure 4.15(c) by the increase
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Figure 4.15: Sub-figures (8)(c)(e) depict the maximum key size k , the relative targeted
operating point th“ , and the optimal number of componentsn} as afunct|on of theinput
capacity Cjy, at d|fferent target FNMR S, settings, respectively. Similarly, (b)(d)(f)
depict them as function of 3y, with different C,, settings.

T“”) hence it is important to extract bits with smaller bit-error probabilities P&°(;].

Therefore at afixed Cj,, there have to be less componentsin order for each component to
have a better feature quality 7> or Gaussian capacity C'¢[j] leading to a smaller Pg°[;].
On the contrary, when Sy, |s close to 1, there is a significant increase in k*. If Sear
convergesto 1, k} goes to infinity. In this case, because of the large target FNMR itis
not necessary to correct many bits with its extreme case where no bits at all have to be
corrected. Hence, many components (see Figure 4.15(f)) can be extracted with a worse
feature quality or asmaller C[j].

Figure 4.16 depicts the effect of the { N,, Ny, Ci, } parameters on the maximum key
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size k¥, the relative operating point Tf‘“ , and the optimal number of componentsn . The
effect of the input capacity Ci, is smllar as illustrated in Figure 4.15(a). Furthermore,
increasing either the number of enrolment N, or verification N, samples leads to an
increase of k. However, keeping either N, or N, fixed while increasing the other shows
that k* increases asymptotically and is limited (see Figure 4.16(b)). Changing both N
and N, significantly increase k. In general, increasing the number of samples enablesthe
use of components with a worse feature quality, hence increasing the optimal number of
componentsn;: when the input capacity Ci, isfixed. Consequently, the relative operating
point T’"T increases because of the lower quality leading to a larger bit-error probability.

A Iarger Tfm leadsto asmaller channel capacity and therefore asmaller possible key size.
However, the optimal number of components increases stronger leading to a net increase
of the maximum key size k.

Some examples of the maximum key size increase are as follows. Within the specific
range of target FNMR 2.5% < Biar < 20% and the input capacity 40 < Cj, < 80,
doubling the target FMR adds 1 to 2 bits to the maximum keys size k. Doubling the
input capacity C;,, doublesthe maximumkey size k* when 5., = 20% and amost triples
when Biar = 2.5%. Furthermore, for the case where the target FNMR is at Btar = 5%,
increasing the number of enrolment samples N from one to six samples increases the
maximum key size k£ with 0.6 bits (from 5.9 to 6.5) at C';, = 40 bits and 2.9 bits (from
12.7 to 15.6) bits at C;, = 80 bits. Keeping N, = 6 and increasing the number of
verification samples IV, from one to two samples increases & with 3.0 bitsat C;,, = 40
and 7.6 bitsat C;,, = 80 bits. A further increase of N, from two to six samplesincreases
k¥ with 9.3 bitsat C},, = 40 and 20.8 bitsat C, = 80 bits.

Determining the Optimal Number of Components In Section 4.2.5 we determined
the optimal number of components n} based on the performance, namely the smallest
FMR ay,, a thetarget FNMR S;... However, the actual goal isto determine the optimal
number of componentsthat [eads to the maximum key size £ *. In this section we analyze
the difference between the two optimization methods.

In order to investigate the differences between the two optimization methods, Fig-
ure4.17 depicts k* asfunction of — log, (v, ) @ different number of componentsn . and
the number of enrolment N, and verification NV, samples. Notethat asmaller a,, leadsto
alarger — log, (aar). We vary the number of components n. and compute — logs (var)
and k¥ at B, = 5% withtheinput capacity C;, = 50 bits. Small n. values correspond to
the upper-left of the curves. When increasing n ., the curve follows the upper-right direc-
tion and after reaching the upper-right corner it goes down to the lower-left. Figure 4.17
shows that both — log, (atar) @nd & are close to their largest value at roughly the same
ne value. Thus, we can conclude that the optimal number of components» } determined
by either the smallest o, Or largest k) are similar with some margin of error, however
the margin of error decreases at larger number of components. Note the difference be-
tween — log, (aay) and kX at n¥ in Figure 4.17. This difference has been discussed in
Section4.2.4
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Figure 4.16: Sub-figures (8)(c)(e) depict the maximum key size k , the relative targeted
operating point 7;3—“ and the number of componentsr * asafunction of input capacity C',
at different { N, NV} settings, respectively. Similarly, (b)(d)(f) depict them as afunction
of { N,, N, } with different C;,, settings. In al cases we have 3i., = 5%.

Optimal Parameter Settings and Key Extraction Efficiency at the Target Perfor-
mance In the previous sections we considered the input capacity C', to be given, while
we determined the optimal number of componentsthat leads to the best performance. We
are now interested in the different possible settings of the number of componentsn . and
the input capacity C, that can reach the target performance defined by both the target
FMR ay., and target FNMR S;... The results are shown in Figure 4.18 for the case of
Brar = 5 x 1072 and atar = 1 x 1072, Figure 4.18(a) illustrates the optimal Gaus-
sian channel capacity C'¢ at the target performance given the number of componentsn ..
We can conclude that if n. increases, smaller Gaussian channel capacities Cq, i.e. lower
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Figure4.17: The FMR — log, (v, ) and the maximum key size & estimated at the target
FNMR B, = 5% at different number of feature componentsn . and number of enrolment
samples { N, N, } with input capacity C;, = 50 bits. For each curve we indicate with
x the cases where we have the optimal humber of components at the smallest av .., and
where we have the smallest or largest number of components under consideration.

quality feature components, are necessary in order to reach the same target performance.
Similarly, Figure 4.18(c) shows that the maximum key size k ¥ decreases at larger n. with
adifference of 2.5 bits between the maximum &} achieved at n, = [— logy(atar)] = 17
and n. = 100. When n, < [—log,(atar)] it is not possible to reach the target FMR.
Thus, increasing n. larger than [— log,(auar)] Only decreases k. Furthermore, from
Figure 4.18(b) we observe that the input capacity has a minimum at n. = 34. Hence,
when analyzing the key extraction efficiency defined by the ratio g—n and portrayed in
Figure 4.18(d) we observe amaximum at n. = 30, where 16.2% of the input capacity is
extracted as the key.

Similar to the results of Figure 4.18, we analyze the influence of the target FMR « ¢,
in Figure 4.19(a)(b)(c)(d), the target FNMR (., in Figure 4.19(e)(f)(g)(h), and the num-
ber of enrolment N, and verification N, samplesin Figure4.19(i)(j)(k)(l). Because of the
relationship n. > [— log,(cvtar)], SMaller ay,, values increase the minimum number of
components and also the maximum key size & due to a similar relationship as shown in
Section 4.2.4. Furthermore, the Gaussian channel capacity C ¢ per component increases,
consequently also the input capacity C;,,. Finally, the key extraction efficiency also in-
creases at smaller av,, values while its optimum shifts towards larger n. values. At the
smallest setting of o, = 1078 the key extraction efficiency is around 17.2% with the
optimum at n. = 54. Decreasing the target FNMR (., also increases the feature quality
and input capacity requirement but does not incresse k. Consequently, the key extrac-
tion efficiency decreases at smaller 3., and its optimum slightly shifts towards larger n.
values. Increasing either N, or N, reduces the requirement on the feature quality and the
input capacity, while & is kept unchanged. Thus, the key extraction efficiency improves
when increasing either N, or N, and the optimum is obtained at larger n . values.

We can conclude that thereis a trade-off between the maximum key size and the key
extraction efficiency. On the one hand all the optimal key extraction efficiency is obtained
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Figure4.18: Asfunction of the number of feature components, we present the requirement
in terms of (&) the Gaussian channel capacity of each component C' and (b) the input
capacity Cy, to reach the target performance given by the target FMR av o = 1 x 1075
and the target FNMR (... = 5 x 102 with a single enrolment and verification sample
(Ne = N, = 1). As output we show (c) the maximum key size k£’ and (d) the key
extraction efficiency defined by the ratio g .

only when the optimal number of componentsis used and can be further increased by de-
creasing the target FMR or increasing either the target FNM R or the number of enrolment
or verification samples. On the other hand, given a target FMR and the number of com-
ponents leading to the optimal key extraction efficiency, the maximum key size can be
further improved by only decreasing the number of components. By decreasing the num-
ber of components, the feature quality hasto increase as such that the input capacity also
increases. Theinput capacity increaseis greater than the maximum key size improvement
that therefore reducing the key size efficiency.

Biometric Sourcewith Unequal Feature Quality

In Section 4.2.5 we discussed the special case where the input capacity C', is uniformly
distributed among the n. components, hence leading to componentswith an equal feature
quality 2 and Gaussian channel capacity C'q. In practice, however, this scenario would
be unllkely to occur. Therefore, in this section we consider the case where Cy;, is non-
uniformly distributed and thus leading to components with unequal feature qualities. The
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Figure4.19: Asfunction of the number of feature components, we present the requirement
to reach the target performancein terms of (a)(e)(i) the Gaussian channel capacity of each
component C¢ and (b)(f)(j) theinput capacity C;,, with the output (c)(g)(k) the maximum
key size k, and (d)(h)(l) the key extraction efficiency defined by the ratio é— This
analysis is presented for different target FMR o, in (8)(b)(c)(d) with Biar = 5 x 1072
and a single enrolment and verification sample (N, = N, = 1), different target FNMR
Brar IN (©)H)(g)(h) With ey = 1 x 1072 and N, = N, = 1, and different number
of enrolment N, and verification N, samplesin (i)()(k)(I) with at,r = 1 x 1075 and
Brar = 5 X 1072,

main requirement is that the sum of the Gaussian channel capacity among the n . com-
ponentsis equal to the input capacity C;,,, namely C;,, = Z?;l Cg[4]. We consider the
two cases of non-uniformly distribution as portrayed in Figure 4.20. In thefirst case, case
1, the first component has the largest Gaussian channel capacity C ¢, while the follow-
ing components have a linearly decreasing capacity. We define the non-uniformity ratio

ccf[gj] > 1 and together with Cy, = 2?21 Clj] fully define the capacity of each

T =
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Figure 4.20: The two cases we consider where C',, is non-uniformly distributed among
the n. components leading to components with unequal capacity C'[j]. (8) Depicts the
first case, case 1, where the first component has the largest capacity and the following
components have a linearly decreasing capacity and (b) illustrates the second case , case
2 where only the first component has an increased capacity. For both cases we defi nethe
non-uniformity as the ratio r = C [n ] which together with Ci, = Z Celj] fully
define the non-uniformity. For both caseswe have C'i,, = 4, n. = 5, andr = 4

component, namely
r(ne—1)Cin
(ne—1)ne+(r—1) i

Calne] = Cc[l],

T

Calj) = Calt] = (j — 1) <b=Celed for2 < j < me — 1.

Call] =

(4.22)

For the second case under consideration, case 2, the first component has the largest ca-
pacity, while the other n. — 1 components have an equal but  times smaller capacity as
depicted in Figure 4.20(b). Again we have the non-uniformratior = CCG[“]]

with Gy, = 377 | C[j] we obtain

Call] = %,
ne 147 4.23
Calj] = €2l for2 < j < ne. (423

Note that for both non-uniform cases we can obtain the uniform case by setting » = 1.
Numerical analysis of the two non-uniform cases are portrayed in Figure 4.21 show-
ing the maximum key size £ and the relative operating point Tf” as a function of non-
uniformity ratio r for d|fferent settings of the input capacity C'y,, and the number of enrol-
ment N, and verification NV, samples. We keep the number of components fixed instead
of using the optimal n;. The results show that both non-uniform cases have asmaller k!
than the uniform casewith » = 1, becauseincreasing r decreases k£ * for both non-uniform
cases. At small r values, the maximum key size k¥ is larger for the case 2 cases, however
at larger  values the decrease of &k continues for case 2, while k for case 1 stabilizes.
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Figure 4.21: The influence of the input capacity C';, being non-uniformly distributed
among the n. components for the non-uniformity cases, where case 1 and case 2 are
indicated by ‘c1’ and ‘c2’, respectively. For the sub-figures (a)(c) we have the settings
Cin = {40, 80} bits with a fixed number of components».. = {25, 45}, respectively, and
for sub-figures (b)(d) we change the number of enrolment IV, and verification N, samples
with Ci, = 40 bits and afixed n for each {N,, N, } setting.

Consequently, the case 1 hasthelargest & at larger non-uniformity ». This crossing point
where k is equal for both cases increases when increasing either C'y, Ne, Or N,,.

The main conclusion of these results is the that the maximum key size k£ is larger
when the feature components have an equal feature quality than when they are unequal.
Thus, any deviation from uniformity is suboptimal. Note that we considered an ECC that
does not exploit the prior knowledge of bits having different bit-error probabilities.

Biometric Sourcewith Dependent Feature Components

Until now we have assumed the extracted feature vector components and the channel
noise to be independent across components and measurements. However, in practice
the components may be dependent and therefore may influence the performance and the
maximum key size k. We only consider the extreme cases where a number of com-
ponents are fully dependent, because a detailed analysis of the dependencies is beyond
the scope of this work. Consider a feature vector with Ny components. We assume
that the first n, components have in addition x, components that are fully dependent
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(duplicate or identical components), while the remaining n; components have no du-
plicates. Hence, it holds that Nr = n, + n5; and the total number of components n.
isequal to n. = n,(k, + 1) + nz. Furthermore, we define the array with n zeros as
0, = [01,02,...,0,]. With the assumed dependency model, the pmf of the number of
bit errors ¢ as defined by (4.8) becomes

def
= P{du(fg, fB) =e} (4.24)
= (Pp1*Pyox...x P, * P51 % P 00)(e),

Pilp

¢(€)

where P, ; = [1 — Po[j], 0%, Pe[j]] isthe marginal pmf of the Hamming distance from
the extracted bits from the set of  , + 1 identical componentsfor thefirst n, components
and P; ; = [1 — P.[j], P.[7]] isthe pmf for the extracted bit from the last n; components
without duplicates. For the set of s, + 1 identical bits it is only possible to have zero or
kp+ 1 bit errorswith probability 1 — P, and P, respectively. Asin the previous sections,
we can use the same eguations for estimating the performance and the maximum key size
at thetarget FNMR.

The results for the case where Ny = 50 with input capacity C;, = 80 bits and target
FNMR at B = 5% is portrayed in Figure 4.22, where the first n,, components have a
single duplicate x, = 1. The ROC performance curve deteriorates once duplicate com-
ponents are added as shown in Figure 4.22(a). In other words, the FMR « ¢, at the target
FNMR Si,, increases, as illustrated by the decrease of — log,(anar) in Figure 4.22(b).
Furthermore, the relative operating point M also increases. Although the increase of

Liax reduces the capacity C/(Le=), we observe that the maximum key size k increases
due to the increase of n... However further increasing n, until each component has « ,
duplicates (n, = Nr) leads to the same o, and T"” as for the case where no compo-
nents have a duplicate (n, = 0). Although the performancels similar, the maximum key
Size k has doubled.

The effects of changing «, are shown in Figure 4.23. When all feature components
have a duplicate, n, = Nr, we can see from Figure 4.23(a) that the maximum key size
k% increases by (x, + 1) when compared to the case where no feature components have
aduplicate n; = 0. Furthermore, Figure 4.23(b) shows that the FMR deviation increases
when increasing the number of duplicates s ,. Note that thelargest FMR, hence the small-

— log, (atar ), is achieved at the point where the average Hamming distance from the
dependent andmdependent b|tsareequal namely (x ,+1)n, = np. Withnz = Np —n,,
we obtain the point n, = . Not only does ., influence the FMR at the target FNMR
and therefore also the maX| mum key size k, it also influences the rel ative operating point
Liar \hich increases with .

“ Hence, it seems that the maximum key size k; could be increased by adding identical
components. However, we argue that the protection actually does not increase because
the FMR ., at the target FNMR S is either kept unchanged or even decreases. We
also observed in Section 4.2.4 that another upper bound for the key sizeis — log 5 (attar),
which will no longer hold once identical bits are added by either increasing n , or x,,.
This discrepancy between the FMR and the maximum key size is caused by the fact
that the ECC is modeled as a Hamming distance classifier that considers each hit to be
independent. Hence, the space {0, 1} is assumed to be fully used and only under this
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Figure 4.22: The (a) performance ROC curve for different n , settings and (b) the maxi-
mum key size k, thelog of the FMR at the operating point — log, (cvar ), and therelative
operating point T:L—a as afunction of the number of dependent componentsn ,. For both
cases the input capacity is C;, = 80 bitswith the targer FNMR at Biar = 5%.
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Figure 4.23: The (a) maximum key size k7, (b) the log of the FMR at the operating
point — log, (aar ), and the relative operating point T;L—“ as a function of the number of
component duplicates  ,.

assumption the maximum key size could be achieved. By adding identical components
the space {0, 1}"< is not fully used, but is reduced to {0,1}"*. Therefore, the actual
maximum key size is smaller and a tighter upperbound would be — log 5 (., ) With its
known offset depending on Ny asdiscussed in Section 4.2.4. Notethat if the upperbound
— log, (asay) 1S taken as the actual maximum key size, the key size will decrease when
identical components are added due to the fact that the o, increases.

We can conclude that by adding multiple « , identical componentsto the feature vec-
tor the maximum key size can be increased artificially, however the actual protection
indicated by the FMR will at most stay equal. The FMR is only kept unchanged when all
components have exactly & , identical components, otherwise the FMR will degrade.
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4.2.6 Experiments

By means of numerical analysis, previous sections illustrated the effects of the system
parameters such as the number of enrolment N, and verification N, samples on the per-
formance and the maximum key size k. In this section we will analyze these findings
using an actual biometric database and two feature extraction algorithms.

Biometric Modality and Database

The database we use isthe MCY T (Ministerio de Cienciay Tecnologia) containing fin-
gerprint images from a capacitive and optical sensor as described in Ortega-Garciaet al.
(2003) [128]. It contains 12 images of all 10 fingers from 330 subjects for each sensor.
However, we limit our dataset to only the images of the right-index finger from the optical
Sensor.

Feature Extraction Algorithms

Two types of texture based features are extracted from a fingerprint, namely directional
field and Gabor features. In order to compensate for possible trandations between en-
rolled and verification measurements, a translation-only pre-alignment step is performed
during the feature extraction process. Such pre-alignment requires extraction of the core
point which is performed according to the algorithm described in Ignatenko et a. (2002)
[129]. Around the core point we definea 17 x 17 grid with eight pixels between each grid
point. The following feature extraction algorithms extract a feature value on each grid
point. Our feature extraction algorithm failed to extract a feature vector from one subject,
so we excluded it from the dataset, hence there are effectively only N = 329 subjects.

Direction Field Feature The first feature extraction algorithm is based on directional
fields. A directional field vector describes the estimated loca ridge-valley edge orien-
tation in a fingerprint structure and is based on gradient vectors. The orientation of the
ridge-valley edge is orthogonal to the gradient’s angle. Therefore a directional field vec-
tor that signifies the orientation of the ridge-valley edge is perpendicular positioned to
the gradient vector. In order to extract directional field features from a fingerprint the
algorithm described in Gerez and Bazen (2002) [130] is applied on each grid point. The
direction field features have a dimension of Ny = 578 and are referred to as the DF
features.

Gabor FiltersFeature The second type of extracted features are the Gabor filters (GF)
features, described in Bazen and Veldhuis (2004) [107], where each grid point is filtered
using a set of four 2D Gabor filters at angles of {0, T 5 ??Tﬂ , respectively. The feature
vector is the concatenation of the modulus of the four complex responses at each grid

point, resulting into a feature vector dimension of Ny = 1156.

Dimension Reduction To decorrelate and reduce the number of feature componentswe
use the principle component analysis (PCA) and the linear discriminant analysis (LDA)
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techniques, where the LDA transformation is also used to obtain more discriminating
feature components. The PCA and LDA transformation matrices are computed using the
training set. Npca isthe reduced dimension after applying the PCA transformation and
Nipa isthe reduced dimension after applying the LDA transformation. We limit Ny pa
to the number of subjects within the training set from which the transformation matrices
are determined.

Testing Protocol

The performance testing protocol consists of randomly selecting 219 out of Ny = 329
subjects as the training set and the remaining 110 subjects as the evaluation set, which is
referred to asthe training-eval uation-set split. The template protection system parameters
such as the quantization thresholds used within the Quantization module of Figure 4.1
and the PCA and LDA transformation matrices are estimated using the training set.

From the evaluation set, N, samples of each subject are randomly selected as the en-
rolment samples while the remaining samples are considered as the verification samples.
This split isreferred to as the enrolment-verification split. The protected templateis gen-
erated using all the enrolment samples and compared with the average of N, verification
samples. When the verification sample is from the same subject as of the protected tem-
plate, it is referred to as a genuine comparison, otherwise it is an imposter comparison.
Note that the number of genuine and imposter comparisons depends on the number of
enrolment and verification samples. For the genuine case we have 30250 comparisons
for the N, = N, = 1 case, 16500 for the case of N, = 6 and 2750 comparisons for
N, = N, = 6 case. For the imposter case we have 3297250, 1798500, and 299750
comparisons, respectively.

The training-eval uation-set split is performed five times, while for each of these splits
the enrolment-verification split is also performed five times. From each enrolment-
verification split we estimate the operating point 7', at the target FNMR 3y, and the
corresponding FMR ¢, Note that the splits are performed randomly, however the seed
at the start of the protocol is aways the same, hence all the splits are equal for the perfor-
mance tests at different settings. Hence, the splitting process does not contribute to any
performance differences.

Results

First we determine the Gaussian channel capacity C'¢[j], which is indicative for the fea-
ture quality, of component j of the feature vector obtained after applying the PCA/LDA
transformation. We consider both on the training set and the evaluation set. The capacity
for the 218 components are illustrated in Figure 4.24 for both the directional field DF and
the Gabor filters GF featuresindicating that the capacity is not equal for each component.
Notethat the capacity is greater for the transformed training set than the transformed eval -
uation set, becausethe PCA/LDA transformation matrix is determined on the same set and
can thus be perfectly trained and the training and eval uation sets are digunct. This perfect
training is aso confirmed by the fact that the last components of the training set have a
capacity C[j] close or equal to zero, while they are larger than zero for the evaluation
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Figure 4.24: For both the GF and DF features, (a)(b) illustrate the Gaussian channel
capacity Cg[j] of each component from the training set and evaluation set, and (c)(d)
the input capacity Ci, taken as the cumulative sum of Cg[j] of al Nypa components,
namely Ci, = S04 O [m].

set. By assuming all components to be independent, we observe that the DF feature has
an input capacity C;,, = 162 bits on thetraining set and C;,, = 186 bits on the evaluation
set, while Cy,, = 193 and C;,, = 207 bits for the GF features. Because the capacities are
not equally divided, we already know that the achieved performance and maximum key
size will be suboptimal.

With the known capacity of each component, we can thus compare the maximum key
size k¥ and the log of the FMR at the target FNMR — log, (cvay) from the theoretical
performance and the experimental performance. The theoretical performanceis obtained
using the analytical framework. These results are shown in Figure 4.25 for different
number of enrolment N, and verification N, samples for both the DF and GF features.
Note that due to the limited number of imposter comparisons, it is not possible to ob-
tain a car sSMaller than 5o— = 3.3 x 1075 except zero for the experimental case with
N, = N, = 6. From the results we observe four effects. First of al, both the exper-
imental and theoretical results confirm the finding in Section 4.2.5 that the components
with asmaller capacity have a greater improvement when more samples are used. For the
single enrolment and verification sample case, the experimental results even show that the
last componentswith amuch smaller capacity deteriorates the performance and therefore
also the maximum key size. However, an improvement is observed when we increase the
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number of enrolment samplesto N, = 6, and agreater improvement is observed for when
we al so increase the number of verification samplesto N, = 6. Secondly, the results also
indicate that the estimated & and — log, (car) @€ much greater for the theoretical case
than for the experimental one. The results in Figure 4.25(e)(f) portray the significant
difference between the obtained relative operating point Tf‘“ between the theoretical and
experimental cases. Thisclearly indicatesthat the FNMR curve isnot correctly estimated,
namely the target FNMR for the experimental case is at a larger relative operating point
than for the theoretical case. As discussed in Kelkboom et a. (2010) [95], estimation
errors are introduced by deviations from the made assumptions such as the Gaussian dis-
tribution, an equal and independent within-class for each subject, and independent feature
components. They proposed a modified analytical framework for relaxing these assump-
tion, however this approach is out of the scope of this work. Thirdly, we observe that
the relative difference between the theoretical an experimental results is greater for the
N, = N, = 1 case and decreases when increasing V. and IV, It has also been shown in
Kelkboom et al. (2010) [95] that by increasing the number of samples the feature vectors
distribution tend to be more Gaussian. Hence, a better Gaussian approximation due to
the increase of the number of samples may be the cause behind the improvement of the
estimation error. The forth and last difference we observed between the theoretical and
experimental resultsin Figure 4.25(a)(b) and Figure 4.25(c)(d) is the relationship between
—log, (avar) and the maximum key size k*. We have shown in Section 4.2.4 that they are
related to each other, namely k¥ < — log, (aar ), @nd thisrelationship is confirmed by the
theoretical case in Figure 4.25(a)(b). However, the results in Figure 4.25(c)(d) show that
for the experimental cases — log, (atay) IS NoOt always larger than k. These deviations
are caused by the estimation errors of the FMR curve, leading to an optimistically smaller
FMR and thusalarger — log, (., ) @ the same operating point.

As discussed in Kelkboom et al. (2010) [95], having dependent feature components
has a great influence on the FMR curve estimation. Due to the dependencies, the variance
of the relative Hamming distance (the Hamming distance relative to n ) distribution at
imposter comparisons is larger than the expected variance of the binomial distribution.
Because the variance of the relative Hamming distance is inverse proportional to the di-
mension, namely o2 = % , theintrinsic dimension decreases when there is a stronger
dependency. Similar as in the work of Daugman (2003) [104], we will estimate the in-
trinsic dimension by fitting the imposter Hamming distance distribution with a bi nomial
distribution with a dimension smaller than n. and a bit-error probability smaller than =
Given the relative Hamming distances at each comparison we estimate its variance crlm
and mean /i;,,,, from which we can estimate the new binomial dimensions . with bit-error
probability Pi™ as
pim = ,[Lima

- |BmaEn | (4.25)
An example of this approximation is shown in Figure 4.26(a) for the pmf of the rela-
tive Hamming distances and in Figure 4.26(b) for the FNMR curve. The experimentally
obtained curves are indicated with ‘Exp’, while the original theoretical model curve is
indicated with ‘ Theo’, and its corrected version for the intrinsic dimension by ‘ Theo-cor’.
Note that we multiplied the pmf for the ‘ Theo-cor’ case with ;;— in order for its areaunder
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Figure 4.25: The maximum key size k!, the log of the FMR at the target FNMR

— log, (atar ), and the relative operating point th“ as a function of the LDA dimension
Nipa a different N, and N, settings |nd|cated as {Ne, Ny} in the legend. Sub-figures
(a)(b) are for the theoretical case for the DF and GF features, respectively, similarly sub-
figures(c)(d) are for the experimental case, and (€)(f) are the theoretical and experimental
case combined.

the curve to be as large for the other two cases for afair comparison. From these results
we observe that the corrected pmf ‘ Theo-cor’ approximates the experimentally obtained
results much better, however the estimation errors are now mainly at the tails of the pmf
and thus at the smallest values of the FNMR.

The estimated bit-error probability Pgm and the intrinsic dimension 7. at imposter
comparisonsfor different LDA dimensions Nipa and number of enrolment N or verifi-
cation N, samples are depicted in Figure 4.27 for both the DF and GF features. Instead
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Figure 4.26: (a) The Hamming distance pmf at imposter comparisons from the experi-
mental case (‘Exp’), from the theoretical case (' Theo’) and the corrected theoretical case
(‘Theo-cor’) where the experimental data is fitted with a binomial distribution with di-
mension 7. and bit-error probability Pgm. Furthermore, (b) shows the corresponding
FMR § curvefor the three casesin (a).

of the actual estimated intrinsic dimension 7. we show the ratio ”C The results from
Figure 4.27(a)(b) indicate that when adding more components by i mcreas ng Nipa, the
relative intrinsic dimension decreases while the bit-error probability converges towards
% . Note that the relative intrinsic dimension also decreases when more samples are used,
hencetaking the average of N, or N, samplesincreases the dependencies between the bit
errors at imposter comparisons.

The maximum key size estimation can be improved by incorporating the intrinsic
dimension as

ki-cor 70 () (4.26)

= ek,
where the corrected maximum key size k *-cor is the relative intrinsic dimension "L times
the original maximum key size k. The improved results are illustrated in Flgure 4.28.
Now alsofor the N, = 6, N, = 1 case, the corrected maximum key sizeis always smaller
than — log, (ctar). The estimation has also improved for the N, = 6, N, = 6 case,
however there are still some deviations, which may be caused by the limited database.

4.2.7 Discussion and Conclusions

The Fuzzy Commitment Scheme isawell known template protection schemein the liter-
ature and is based on a key-binding and key-rel ease mechanism, where the entropy of the
key is indicative for the amount of privacy and security. Considering the key to consist
out of independent and uniform bits, its entropy is then mainly determined by its size. We
have analytically determined the classification performance and the maximum key size
of the Fuzzy Commitment Scheme given a Gaussian modeled biometric source, asingle
bit extraction quantization scheme, the number of enrolment and verification samples,
an ECC with decoding capabilities at Shannon’s bound, and the target FNMR. Further-
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Figure 4.27: (a)(b) The estimated relative intrinsic degrees of freedom or dimension Z—
of the Hamming distance pmf at imposter comparisons for different LDA settings Nppa
and number of enrolment N, or verification N, samples, and (c)(d) the corresponding

estimate bit-error probability 2™ for both the DF and GF features.

more, we modeled the Fuzzy Commitment Scheme as a binary symmetric channel with
its corresponding bit-error probability.

The biometric sourceis modeled by parallel Gaussian channels. Each Gaussian chan-
nel models the real-valued behavior of a feature component by means of a Gaussian den-
sity for the between-class variance and an additive zero-mean Gaussian density for the
within-class variance. Furthermore, we considered the within-class noise to be indepen-
dent across components and measurements, and homogeneous, i.e. given acomponent all
subjects have an equal variance. However, the within-class variance can be different for
each component. Therratio between the between-class and within-class standard deviation
is used as the feature quality. Because of the Gaussian assumption we used the Gaussian
channel capacity as the discriminant power for each component. Conseguently, the dis-
criminant power of the biometric source, referred to as the input capacity, is defined by
the sum of the Gaussian channel capacity across all components.

As the quantization scheme, we used a known method where a single bit is extracted
per component using a binarization scheme based on thresholding. As the threshold we
used the mean of the between-class density. With this setup we estimated the bit-error
probability disturbing the binary symmetric channel, where we al so included the effect of
the number of enrolment and verification samples on the bit-error probability. We have
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shown that having an infinite enrolment samples with X verification samples approxi-
mates the performance when both are equal to 2.X, if the feature quality is large enough.

We estimated the maximum key size assuming an optimal binary ECC that corrects
up to t. random bit errorswith decoding capabilities at Shannon’s bound. We determined
the maximum key size at the operating point determined by Shannon’s theorem, at the
operating point where the EER is achieved, and at the operating point determined by the
target FNMR. We showed that the maximum key size obtained at the operating point dic-
tated by Shannon’stheory is optimistic and has ahigh FNMR, namely closeto 50%. The
high FNMR is due to the assumption from Shannon’s theory that the codeword should be
sufficiently large, while it is not large enough even for the best performance biometric,
namely iris, which has a degree of freedom of 249 bits. We proposed two other operating
points, namely the analytical operating point at the EER and the operating point given the
target FNMR. The maximum key size at the EER is always smaller, down to 25%, than
at the operating point from Shannon’s theory. At the EER more bits have to be corrected
due the smaller FNMR requirement, conseguently the operating point is larger leading to
asmaller key size. The operating point at the target FNMR is a compromise between the
two af orementioned methods, and |eads to the maximum key size with the desired FNMR.
We aso discussed the relationship between the maximum key and the target FMR at the
target FNMR. We showed that the upperbound from literature, namely that the maximum
key size is smaller than — log, (FMR), is not so tight when errors have to be corrected.
The difference increases when using larger codewords, and could be around 3 bits when
the codeword is 127 bits long.

With the analytical framework we studied, by means of numerical analysis, the effect
of the system parameters such as the source capacity, the number of feature components,
the number of enrolment and verification samples, and the target FNMR on the classifi-
cation performance and the maximum key size. There are three main scenario, namely
(i) the scenario where the input capacity is uniformly distributed among the components,
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(i) the scenario whereit is non-uniformly distributed, and (iii) the scenario where a set of
components are fully dependent.

For the first scenario, we extensively studied the effect of the system parameters,
namely (i) the case where both the input capacity and the number of components are
given, (ii) the case where the optima number op componentsis determined given the in-
put capacity, and (iii) the case where the input capacity and the number of componentsare
determined in order to reach thetarget FM R and target FNMR. In thefirst case we showed
that increasing the number of enrolment and verification samples and the target FNMR
increases the maximum key size, however the maximum key size is limited to the number
of components. The greatest improvement is obtained by increasing both the number of
enrolment and verification samples. Similar results were obtained for the second case,
however due to the variable number of components, the maximum key size had a greater
increase, especially when increasing both the enrolment and verification samples. The
main finding was the fact that components with worse discriminant power could be used
when increasing the system parameters, which was also confirmed by the experiment re-
sults with the fingerprint database. With the range of the input capacity between 40 bits
and 80 bits, we found the following numerical analysis results. Doubling the input ca
pacity roughly tripled the key size at a target FNMR of 2.5%, while doubling the target
FNMR from 2.5% to 5% on average added around 1 bit. Increasing the number of enrol-
ment samples from one to six added 2.9 bits. With six enrolment samples and increasing
the number of verification samples from one to two added 7.6 bits, while increasing from
two to six samples added 20.8 hits. Thus, if the subjects of the biometric system have
no issue with a less convenient system where the target FNMR has increased or more
biometric samples have to be acquired, we could create a protected template that is more
difficult to break by an adversary. Namely, doubling the target FNMR also doubles the
search space of the key. Moreover, switching from a single to six enrolment and verifi-
cation samples increases the search space by almost 232. Supplying six samples during
enrolment seems acceptable, because it only needs to be done once. Although captur-
ing six samples during verification may be considered inconvenient, it still gives a good
insight in what can be achieved by such a system. In both the first and second case we
observed that the maximum key size significantly reducesif the target FNMR is smaller
than 5%. In the third case we showed the trade-off between the key extraction efficiency
and the optimal maximum key size given atarget FMR. If the maximum key size has to
be increase the input capacity has to increase unproportionately, hence reducing the key
extraction efficiency.

Comparing the results of thefirst two scenarios, we can conclude that given a certain
input capacity, any deviation from a uniformly distribution is sub-optimal with respect to
the maximum key size. Note that we considered an ECC that does not exploit the prior
knowledge of bits having different bit-error probabilities. Furthermore, in the third sce-
nario we showed that adding fully dependent bits does not improve the performance, the
FMR can even increase at the same target FNMR, while the maximum key size can be
artificially increased. We conjecture that the discrepancies between the reported key size
and system performance shown in Table 4.1 is mainly caused by this artificially increase
of the key size due to dependencies between feature components. Hence, both the re-
ported key size and FMR have to be taken into account when analyzing the actual privacy
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Figure 4.29: The Gaussian approximation of the pmf of the number of errors ¢ at gen-
uine (the solid blue curve) and imposter (the dashed-dotted red curve) comparisons from
Figure4.7.

and security of atemplate protection system.

We can conclude that we analytically obtained the relationship between the system
performance and the maximum key size given the system parameters. Having indepen-
dent feature components of equal quality is necessary in order to be optimal in terms
of performance and key extraction. Furthermore, we revealed the trade-off between the
convenient use of the biometric system, determined by the target FNMR and the num-
ber of samples to be acquired, and the privacy and security protection indicated by the
maximum key size. Essentially, if desired, more protection can be achieved by sacrificing
some convenience.

4.A The EER Operating Point with Gaussian Approxi-
mation
In order to find an analytical expression of the EER operating point, T'g g r, We approx-

imate the binomial density used for modelling the pmf of the Hamming distance ¢ by a
Gaussian density. Hence, instead of (4.9) we use

c—u\2
Pa(eN,p) = —L e (78)

Ve _( o ) (4.27)
_ 1 V2nc(1—p)p
RN ’

where we use the mean and variance of the binomia density, namely the mean ;. =
n.p and standard deviation o = /n.(1 — p)p. The resulting approximated probability
density as afunction of the Hamming distance ¢ is shown in Figure 4.29.
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Thus given the operating point 7', the FNMR from (4.12) can be rewritten as

oo

[ Pa(isne, PE°) di

) () : (4.28)
di

f 1 e ogeV2
T OgeV 2T

p(T) =

)

With pge = ncPg° and oge = /nc(1 — P£°)PS°. By applying the following change of
variabler = % with di = o4.dT We obtain

o0
BT = S, e (429)
T=2Zge

where we have the genuine z-score z4.(7) = % that fully determines the FNMR.
Similarly, for the FMR we have

T
a(T):'f Pg(i;ne, P™) di
= | AeiTar (4.30)
= \/%e*%Tz dr,

T=—2im(T)

where we applied the same variable change, defined the imposter z-score zi, (1) =
T—1m gnd used the property that the integral is symmetric. Because pm = % we

have pim = % and oy = @ Being at the EER operating point T'rpr implies that
o(Teer) = B(Terr). Hence, equation (4.29) and (4.30) have to be equal. Both equa-

tionsare equal when z,e (Teer) = —2im(TEER), thus TE R becomes

2ee(TEER) = —2im(TEER),
TEER—Mge _ _ TeEER—Mim
- im (431)
Ujie _ #sx,,ag:Jr#gem:u
EER — — 5. 5

Tim+0ge

Substituting the genuine parameters iz = nc P2 and oge = \/nc(1 — PE°) PE°, and the
imposter parameters jiy, = % and oy = @ we obtain

ne (/PP 4 P5°)

TEER = or
2¢/PE(1-PE)+1 (4.32)
Tepr _ Pfe(lfPfeHPfe.
ne 2¢/PE (1-PE°)+1

Notethat the relative operating point Tiﬂ and thus the BSC channel capacity at the EER
operating point C(T£22) isfully determined by P2°.
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4.2 Chapter Conclusions

The maximum key size that can be extracted depends on the performance of the underly-
ing biometric recognition system. Note that the FMR and FNMR depend on the operating
point 7', which is equal to the number of bits the ECC has to correct. With the relative
number of bits that have to be corrected we can determine the maximum key size by as-
suming the ECC to be operating Shannon’s bound. An important finding of this work is
the fact that the upperbound of the key size for the HDS known in the literature, namely
— logy (auay) Of (4.21) where a,, is the target FMR, is not tight when compared to the
maximum key derived assuming an ECC operating on Shannon’s bound. The difference
can be a couple of bits and increases with the number of feature components. When the
FMR is taken as the target performance, the key size depends on the operating point de-
termined by the target FMR and has an upperbound given by — log 5 (atar). However,
when taking the FNMR as the target performance, the operating point and therefore the
maximum key size depend on

i Thetarget FNMR: increasing the FNMR increases the maximum key size.

ii Theinput capacity: increasing the input capacity increases the maximum key size
and having feature components of equal quality, wherethe quality is defined by the
ratio of the between-class and within-class variance, optimizesthe key size that can
be achieved.

iii The number of feature components: deviating from the optimal number of compo-
nents reduces the key size.

iv. The number of enrolment and verification samples. increasing the number of sam-
ples increases the maximum key size. Furthermore, increasing the number of sam-
ples increases the optimal number of components, hence the feature extraction al-
gorithm can output larger feature vectors.

Considering the fact that having a larger target FNMR and more enrolment and veri-
fication samples do influence the convenience of the biometric system, we have shown a
trade-off between the protection capability of the HDS in terms of key size with respect
to its convenience.

With respect to the number of enrolment and verification samples, we have shown
that the classification performance for the N, = N, = 2X case convergesto the { N, =
oo, Ny, = X} case when the feature quality increases. In other words increasing the
number of enrolment samples to infinity leads to a similar performance when doubling
both the number of enrolment and verification samples.

With Table 4.1 we have provided the discrepancy between the reported FMR and key
size published in the literature. With the adapted model incorporating fully dependent
feature components, we may be able to explain one possible cause of this discrepancy,
namely the dependency between the feature vector components. Because of this depen-
dency, the reported key size can be larger than the upper bound depending on the FMR,
namely — log, (aar ). Hence, in this case the key size is not indicative for the remaining
uncertainty about the biometric data given the protected template.
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Chapter

Information Leakage Analysis of
the Bit Protection Part

5.1 Chapter Introduction

In this chapter the first part of the third research question will be addressed, namely

Given theHDStemplate protection scheme: How doestheinfor mation leak-

age from the auxiliary data affect theirreversibility and unlinkability prop-

erty?
More specifically, this chapter answers this research question only for the bit protection
part of the HDS of Figure 1.5, also known as the fuzzy commitment scheme. Chap-
ter 6 will answer the question for the bit extraction part. Recent publications[39,40] have
shown avulnerability affecting the unlinkability property, namely the cross-matching pos-
sibility based on the code-offset auxiliary data AD - only, due to the linear property of
the ECC. Simoens et a. (2009) [40] determined the theoretical FMR when comparing
AD, of arbitrary protected templates from different application. In Section 5.2 we ex-
tend this analysis and also determine the theoretical FNMR. We & so show that aslong as
the HDS is balanced, i.e. there are equal number of enrolment and verification samples
(V. = N,), the cross-matching classification performanceis worse than the classification
performance of the HDS. Besides this extended analysis, we also provide a solution based
on randomization in order to mitigate the cross-matching performance close to random.
The main results are published in Kelkboom et al. (2010) [131] .

1E. J. C. Kelkboom, J. Breebaart, T. A. M. Kevenaar, |. R. Buhan, and R. N. J. Veldhuis, “Preventing the
decodability attack based cross-matching in a fuzzy commitment scheme,” Submitted to IEEE Transactions on
Information Forensics and Security, 2010.
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5.2 Preventingthe Decodability Attack based Cross-matching
in a Fuzzy Commitment Scheme

5.2.1 Abstract

Template protection techniques are used within biometric systems in order to safeguard
the privacy of the system’s subjects. This protection aso includes unlinkability, i.e. pre-
venting cross-matching between two or more reference templates from the same subject
across different applications. In the literature, the template protection techniques based
on fuzzy commitment, also known as the code-offset construction, have recently been
under scrutiny. Recent work presented the decodability attack vulnerability facilitating
cross-matching based on the protected templates and its theoretical analysis. Firstly, we
extend the theoretical analysis and include the comparison between the system and cross-
matching performance. We validate the presented analysis using real biometric data
from the MCYT fingerprint database. Secondly, we show that applying a random bit-
permutation process secures the fuzzy commitment scheme from cross-matching based
on the decodability attack.

5.2.2 Introduction

When using an application based on biometrics, first a reference template is generated
from the biometric sample provided in the enrolment phasefor later use. |nthe authentica-
tion phase, anew biometric sampleis acquired and compared with the reference templ ate.
Hence, the application requiresthis reference template for a successful authentication and
therefore it needs to be stored. Basically, there are two options of storage, namely on a
token carried by the subjects themselves or in a centralized database. The latter case is
considered to be more convenient for the subjects. However storing unprotected biomet-
ric reference templatesin centralized databases for each application increases the privacy
risk. For example, if these databases are compromised, an adversary could check the
types of applications or services a specific subject has subscribed to. In the literature, this
is known as cross-matching.

Therefore it is not a surprise that the 1SO guidelines [25] dictate the avoidance of
centralized databases if possible. Some known countermeasures to safeguard the privacy
and security by enforcing some of the ISO guidelines are (i) the practice of data sepa-
ration where the most privacy sensitive information is stored on an individual smartcard
or token, (ii) the use of data minimization principles, (iii) the use of classical encryp-
tion techniques such as DES, AES, RSA to augment the confidentiality or integrity of the
reference template and (iv) the implementation of template protection which createsirre-
versible, renewable and unlinkabl ereference templates, i.e. protected reference templates.
In our work we focus only on the template protection method.

In the literature, numerous template protection methods such as the Fuzzy Com-
mitment Scheme (FCS) [36], Helper Data System (HDS) [33, 34, 48], Fuzzy Extrac-
tors [64, 65], Fuzzy Vault [80, 84] and Cancelable Biometrics [59] have been proposed,
with the claim of preventing cross-matching. However, recently it was presented in [132]
that fuzzy vaults were susceptible to cross-matching and [119] solved this issue by hard-
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ening the protected reference template using a secret key or password provided by the
subject. The requirement of keeping the key or password secret however, has a serious
impact on the convenience of the biometric system.

In the FCS construction, also known as the code-offset construction, the binary vec-
tor extracted from the biometric sample is XOR-ed with a randomly selected codeword
resulting into auxiliary datathat is stored as part of the protected template. Certain imple-
mentations of the Helper Data System, Fuzzy Extractors are based on this FCS construc-
tion. Possible cross-matching vulnerabilities for template protection systems based on
the FCS construction are briefly discussed in [89] and are based on attack methods using
exhaustive search. More recently, a new vulnerability known as the decodability attack
has been published for the case when the FCS is based on alinear error-correcting codes
(ECC). To the best of our knowledge, the cross-matching vulnerability of the FCS con-
structionisfirst published by the presentation of Dr. Stoianov at the European Biometrics
Forum (EBF) Biometric Encryption Seminar [39]. Cross-matching is made possible by
simply checking whether decoding the XOR of two auxiliary data elements stored in dif-
ferent databases|eadsto avalid codeword. If it leadsto avalid codeword the two auxiliary
datamost likely belong to the same subject and is labeled as genuine. Therefore, this vul-
nerability is also known as the decodability attack. More recently, atheoretical analysisis
presented in [40] where the authors determine the probability that the decodability attack
incorrectly labels two auxiliary datafrom different subjects as genuine under the assump-
tion that across the whole population the bits of the binary vector are independent and
uniform.

Contributions: Asour first contribution, we extend the theoretical analysisfrom [40]
and show the rel ationship between the cross-matching performance with the template pro-
tection system performance itself. Furthermore, we empirically evaluate the theoretical
analysis using real biometric data from the MCY T fingerprint database and show that if
no careis taken cross-matching based on the decodability attack isindeed possible. How-
ever, as our second contribution we will show that this vulnerability can be prevented by
implementing a bit-permutation or shuffling randomization process on the binary vector.
Consequently, the cross-matching performanceis close to random.

The outline of this paper is as follows. In Section 5.2.3 we briefly describe the FCS
construction, present the properties of a linear error-correcting code (ECC), and discuss
a probability estimation case extensively used in the remainder of this work. In Sec-
tion 5.2.4 we discuss the possible cross-matching attacks including the newly published
decodability attack [39,40]. In Section 5.2.5 we theoretically analyze both the cross-
matching and template protection system performance and show their relationship. Val-
idation of the theoretical performances are conducted in Section 5.2.6 using the MCY T
fingerprint database. In Section 5.2.7 we show that a bit-permutation randomization pro-
cess reduces the effectiveness of the decodability attack. Conclusions are given in Sec-
tion 5.2.8.

5.2.3 Prdiminaries

The template protection scheme under consideration is known as the Fuzzy Commitment
Scheme (FCS) from [36] and is based on an error-correcting code (ECC). Wefirst discuss
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the notations related to the ECC and thereafter we present the FCS. Furthermore, we
discuss the estimation of the probability mass function (pmf) of the number of bit errors
when XOR-ing two random binary vectors, which is extensively used in the remainder of
this work.

Linear Error-Correcting Code

We denote a t.-error linear binary error-correcting code as [n., k¢, t.], where n. is the
length of the codeword C, k. the length of the message or key K, and t. the error-
correcting capability.

The ECC Encoder (Enc) function convertsthe key K € {0, 1} *< into its correspond-
ing codeword C € {0,1}". The codebook C is the set of al vaid codewords of the
ECC with cardindity |C| = 2*. As the distance function we use the Hamming dis-
tance denoted as dyi {., .} and the Hamming weight denoted as ||.||. The minimum dis-
tance of the codebook C isd = 2¢. + 1, therefore it can correct up to t. bit errors.
Because of the linearity property of the ECC it holds that the XOR operation between
any pair of codewords leads to another codeword from the same codebook C, namely
vV C;,Cj € C: Cy® C; = Cy, with Cy, € C. Furthermore, we define W to be the
set of possible weights w of the codewords from C, while the function N¢(w) returnsthe

number of codewords n,, withweight w, with Y~ N¢(w) = [C|.
weWe

Given aword w € {0,1}" and the smallest distance to any codeword defined as

de(w,C) L mi Ncecdu(w, C), the ECC Decoder (Dec) function returns the key corre-

sponding to the closest codeword from the codebook C if the smallest distance d .(w, C)
is smaller than or equal to the error-correcting capability ¢., i.e. d.(w,C) < t.. When
the smallest distanceis larger than the error-correcting capability, d . (w,C) > t., thenthe
word is not decodable and the ECC Decoder function either returns a decoding error or
randomly selects a key.

In our experiments we use the linear block type ECC “Bose, Ray-Chaudhuri, Hoc-
quenghem” (BCH), with some [n., k., t.] Settings given in Table 5.1. For the BCH ECC
we use the maximum error-correcting capability ¢/ is limited to around 25% of the code-
word size n. (see Table5.1), and if the word is not decodable it outputsthefirst k . bits of
the word as the key.

Fuzzy Commitment Scheme

The fuzzy commitment scheme (FCS) from [36] is one of the first template protection
techniques and is based on the bit commitment technique known within the field of cryp-
tography. The FCS works on discrete biometric data, while in practice most biometric
data are continuous. Figure 5.1 portraysthe FCS construction combined with a bit extrac-
tion module.

In the enrolment phase the real-valued column feature vector f¢ ¢ R™r is extracted
from each N, biometric enrolment sample by the feature extraction algorithm. From the
N, feature vectors, a single binary column vector f§ € {0,1}"F is created. For each
component, we extract a single bit using a bit extraction scheme based on thresholding,
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Figure5.1: Thefuzzy commitment scheme (FCS) combined with a bit extraction module.

where the mean of the background density is chosen as the threshold and estimated from
adigoint training set [33-35]. Prior to thresholding the mean of the N, feature vectors
is taken. Furthermore, a random key K € {0, 1} *< is created and encoded by the ECC
Encoder module into a codeword C € {0,1}" from C. The fundamental property of
the FCS is the XOR operation of the codeword C and the binary vector f creating the
offset AD, as helper data, AD; = C & f5. The helper data AD,, is also referred to as
the Auxiliary Data in [102], in line with standardization activitiesin 1SO [25]. Together
with the hash of K, aso referred to as the Pseudonymous Identifier (Pl), we obtain the
protected template. As described in [36], £ is equivalent to the witness with which we
commit the codeword C using the XOR operation considered to be similar to the one-
time-pad encryption algorithm. The outcome of the commitment is the AD 5 and Pl pair,
which together is also known as the blob.

In the verification phase, the binary vector fy; is created by quantizing the mean of
the N, verification feature vectors fV. Hereafter, the auxiliary data AD - is XOR-ed with

Table 5.1: Examples of the BCH ECC given by the codeword (n ) and key (k.) length,
the corresponding correctable bits (¢ ), and the relative error correcting capability ¢ /n..

[ [DItS]] ke (OS] fe [BIS] | £/ |

6 7 22.6%
31 11 5 16.1%
16 3 9.7%
7 15 |23.8%
63 16 11 |175%
24 7 11.1%
8 31 |244%
127 22 23 |18.1%
36 15 |11.8%
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£ resulting into the possibly corrupted codeword C* = AD; @ £ = C @ (fg @ ) =
C & e, where the Hamming distance ¢ = du(f}, ) = ||e|| indicates the number of
errors corrupting the codeword C. Decoding C* by the ECC Decoder module leads to
the candidate key K*. The candidate pseudonymousidentifier Pl * is obtained by hashing
K*. A match is returned by the Comparator module if both Pl and Pl * are equal, which
occursonly when K and K* are equal . Both secrets are equal when the Hamming distance
between the binary vectorsf§ and fy is smaller or equal to the error-correcting capability
of the ECC, ¢ = du(f§,f3) < t.. Hence, to successfully decommit the blob, a new
witness f§ hasto be provided that iswithin ¢ bit differenceswith the original witness 5.

Anillustration of the code-offset is presented in Figure 5.2, where the n . dimensional
problemis simplified into a 2D problem. The grid of small dots represent the word space
{0, 1}, while the bigger dots represents the codewords from C with the error-correcting
capability represented by the circles with radius ¢.. The auxiliary data AD, shifts the
enrolment binary vector ff; to the codeword C. In the verification phase, the same shift
is applied to £ and will lead to amatch only if it is within the radius ¢ of codeword C.
Hence, all binary vectors £ within the dashed circle with radius ¢. and center point £
will lead to a match.

In thiswork we consider two cases of the FCS, namely the unbalanced and balanced
system. For the unbalanced system there are N, # N, enrolment samples with NV, veri-
fication samples, while for the balanced case the number of verification samplesis equal
to the number of enrolment samples, N, = N..

Hamming Weight after XOR-ing two Random Binary Vectors

In many derivations in the remainder of this work we need a solution to the following
problem. Consider the case of having two words w; and w, randomly selected from
{0,1}" with weights w; and w,, respectively. Defining the number of bit errors or
differences ¢ between w; and wo, namely e = dg(w1, ws), we are interested in the
probability mass function (pmf) of e.

Lemma 5.2.1 (Hamming Weight after the XOR of two Binary Vectors). Given two ran-

dom binary vectors w; and wo with Hamming weight w; and w, respectively and defin-

iNg Wiin = min(wy, ws), and wpax = max(wz, ws), the number of possible bit errors

e = du(wi,ws) is given by the set £ = {€min, €min + 2, - - - €max — 2, €max} With
probability Py, . (€ w1, ws, n.) defined as

P (€3 w1, w2, n¢) &

0 ifed F (5.1

=\ == j ( Wmax J(JeTvmes ) ifee B

( ne Wmin—(€—€min)/2/ \(€—€min)/2
Wmin

where emin = |w1 — wa|, and €max = ne — w1 + w2 — Nl

Proof. Because w; and w, have w; and wq bits of value 1, respectively, the minimum
number of possible errors equals the difference €, = |w1 — wa|. For example, let
wy > Wa, 1.6 Wmax = wi and wmin = wa, and the first w; bits of w; have avalue 1
whiletheremaining n. —w; bitshaveavalue 0. The casewith e,,;, errorscan be obtained
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Figure 5.2: An illustration of the FCS construction principles. The grid of small dots
represent the word space {0, 1} "<, while the bigger dots represents the codewords from C
with the error-correcting capability represented by the circles with radius ¢ .. AD- shifts
the enrolment binary vector f§ to the codeword C. In the verification phase, the same
shift is applied to £ and will lead to a match if it is within the radius ¢ . of codeword C.
Hence, al binary vectors £ within the dashed circle with radius ¢t. and center point fg
will lead a match.

by allocating the w-, bits of value 1 asthe first bits of w,. Overall, there are (Zj;) possible
combinations of having w, bits of value 1 of w at locations where the bits of w, havea
value of 1. Thus, the probability of having e ,,;, errorsis equal to the ratio of the number
of possibilities with respect to the number of binary vectors of length »n . with weight ws,
nemely (i2)/(1;)-

Note that two bit errors are introduced if one bit of value 1 of w 5 is allocated where

w, has a bit value of 0 instead of value 1. Hence, there are () ("<;"") possible

combinations of introducing 2 bit errors. The first binomial coefficient (2" ,) is the
number of possibilities of locating wo — 1 bits of value 1 of w4 at the w; locations
where w; has bits of value 1. The second binomial coefficient ("<7**) is the number of
possibilities of alocating asingle bit of value 1 of w, at then.— 1 locationswhere w; has
abit of value 0. Similarly, four bit errors are introduced when two bits of value 1 of w
are allocated where w; hasabit value of O with (") (","") possible combinations.

The maximum number of bit errors e, is introduced by allocating al w4 bits of
value 1 of wo at locations where the bits of w; have avalue 0. When wy + wy > ne,
the number of bits of w, of value 0 is smaller than the number of bits of w o of value 1,
namely n. —w; < we, because of thew; > ws assumption. Consequently, the maximum
number of bit errorsislimited to € yax = ne — w1 + wa — nel. O
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5.2.4 Cross-Matching Attacks

The setup of the cross-matching analysis is depicted in Figure 5.3. We consider the
scenario where there are two applications using the same biometric trait and identical

template protection algorithms. Each application creates a protected template from inde-
pendent enrolment samples of its subjects and stores it into its centralized database. We
consider both centralized databases to be accessible by the adversary. Furthermore, we
consider two cases differing on what is stored in the centralized database. In the first
case, Case 1, both the auxiliary data AD- and the pseudonymous identifier Pl are stored.
Hence, the protected template for the first and second applicationisthe pair {Pl 1, AD2 1 }
and {Ply, AD2 >}, respectively. In the second case, Case 2, we consider only AD to
be stored in the centralized databases that are accessible, while Pl may be stored within
a persona storage device such as a smart-card which is not compromised. The adver-
sary has access to all protected templates in both databases and tries to find subjects that
are enrolled in both applications. Two protected templates, each taken from a different
database, are compared by across-matching classifier in the Comparator modulein order
to determine whether they were derived from the same subject. The cross-matching clas-

sifier computes a cross-matching distance score s ., onwhichto baseits decision whether
the two protected templates belong to the same subject (genuine) or not (imposter). The
comparison between the protected templates of the same subject is referred to as a gen-
uine comparison and between different subjects as an imposter comparison. In the ideal

case, it would be impossible to link the protected samples from the same subjects across
the two databases.

In this section, we discuss several cross-matching classifier methods. We discuss the
exhaustive search approach for Case 1 and Case 2. We omitted the third possible case
where only Pl is stored in the centralized databases that are accessible by the adversary,
because it can be easily shown that cross-matching is not possible. If the key could be de-
rived from P, they could still not be used for cross-matching because the keys where gen-
erate randomly within each application. Furthermore, we discuss the recently published
method known as the decodability attack [39] [40], which is not based on an exhaustive
search and only consists of an XOR and decoding operation by exploiting the linearity
property of the ECC.

Exhaustive Sear ch Attack

Given two protected templates, the exhaustive search type of the cross-matching attack
relies on searching the complete codebook C in order to determine whether the two pro-
tected templates belong to the same subject.

Case 1: Pl and AD,. Recdl that the pseudonymous identifier Pl is the hash of the
randomly selected key K. Because the Pl is part of the protected template, it is more
effective to search the key from the PI. Assuming that the probability of a collision is
small, i.e. the probability that two different keys have the same hash value, the key lead-
ing to the hash value equal to Pl can be found by searching the key space of {0, 1} *«
and taking its hash value. The enrolled binary vector £ can be obtained by computing
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Figure 5.3: Two cases of the cross-matching attack scenario between two application
databases that are accessible by the adversary. The first case (Case 1) both Pl and AD
are stored in the centralized database. In the second case (Case 2) only AD is stored in
the centralized database accessible by the adversary, while AD» is assumed to be stored
in asecureway and is not accessible by the adversary.

the XOR of auxiliary data AD, and the codeword C corresponding to the obtained key
K, namely f§ = AD, @ C. By performing this exhaustive search on each protected
template we obtain the binary vector £ | and ff , for the first and second application,
respectively. As the cross-matching distance score s ,, we use the Hamming distance
Sem = €on = du(fg 1, fg »). Onaverage only half of the key space has to be searched,
hence the average effort of finding the key corresponding to Pl is 2 *<—1. Consequently,
finding both keys separately only takes twice the effort, namely 2 %-.

Case 2: Only AD-. Because Pl is not available, the distance measure has to be obtained

from AD only. By defining the XOR operation of the two auxiliary data as AD g def

ADy 1 @ ADg 5, we canrewrite ADg, as

ADg = AD3y ;1 ®ADy
= (f§,1 D Cl) D (fﬁ,Q D C2)
= (f§,1 D fﬁ,Q) D (Cl D C2)
=ed CB;

(5.2)

whereff ; (C1) and ff , (C2) arethe binary vectors (codewords) in the enrolment phase
for application 1 and 2 respectively, e is the error pattern between the enrolment binary
vectors, and we used the property of linear codes where the X OR of two codewords leads
to another codeword from the same codebook. A graphical representation of the XOR
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Figure 5.4: An illustration of the XOR of AD, ; and AD » obtained from the enrolled
binary samples ff; ; and ff; , from the same subject.

operation is presented in Figure 5.4. Hence, all possible error patterns can be computed
by exhaustively taking the XOR of ADg with any codeword from C, which is an effort
of 2%, As the cross-matching distance score s..,, we take the error pattern with the
smallest Hamming weight, namely s.,, = mincec||ADg @ C||. Note that it holds that
Som = €on = du(fg 1, 5 o) only whene,,, = du(fg ;,f5 ») < t., becausein this case
C; will lead to the smallest distance. For the case when du (g |, f5 ,) > t. thereisa
probability that we obtain s ,, < t.. Becausethe distance of ADg, to Cs islarger than ¢,
thereis a probability that another neighboring codeword is closer, due to the existence of
multiple codewords at the minimum distance d = 2t. + 1. The obtained cross-matching
scoreisequal to s, = ||e*|| < t. only if theerror pattern can berewrittenase = e*@C;
with ||e*|| < t.and C; € C.

Note that when the codeword C3 is known, it is not possible to derive the binary
vectors f, ; and g ,, because the codewords C; and C. are not known. Because of the
linear property of the ECC there are 2% possible combinationsof C; and C that lead to
Cs. Hence, with this cross-matching attack we obtain only a distance measure between
the two enrolment binary vectors f ; and fg , but not their actual value.

The effort of determining the cross-matching distance score s, is case-dependent.
If we obtained a cross-matching score s ,, smaller than ¢, the average effort of the cor-
responding cross-matching attack equals 2%<~!, because the search can be stopped once
a score smaller than ¢, has been obtained. When s, > t. then the complete codebook
had to be searched and the effort is then 2%,
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Decodability Attack

The decodability attack method presented in both [39, 40] is based on cross-matching
with only ADs. For linear ECCs, they show that when AD is decodable, the two pre-
sented auxiliary data are most probable derived from the same subject. More formally
if Dec(ADg) is successful the cross-matching classifier outputs a match. From (5.2) we
can derive that ADg, is decodable when |le|| < t. or e = e* @ C; with ||e*|| < .
and C; € C. Hence, the decodability attack exploits the same underlying mechanism as
shown in Case 2 in Section 5.2.4 and has therefore the same performance. However, the
effort is significantly reduced towards a single decoding operation by using the decoding
function of the ECC. Similarly, only a distance measure between the binary vectors f g ,
and ff; , can be obtained but not their actual value.

5.25 Reatingthe Cross-matching and System Performance

In Section 5.2.4 we presented severa cross-matching attack methods from which the de-
codability attack is the most serious one because of its reduced effort towards a single
decoding operation of the ECC. In this section we will determine the cross-matching
classification performance in terms of the false match rate (FMR) and false non-match
rate (FNMR) under the assumption that the subjects are in both databases. Furthermore,
we compare the cross-matching performance with the system performance of the fuzzy
commitment scheme. We assume the extracted bits to be independent with equal bit-error
probability.

False Match Rate Relationship

Lemma 5.2.2 (FMR Relationship). Under the assumption that the bits of fz € {0.1}"<
across the population are independent and uniform and given a ¢ .-error binary linear
ECC, the cross-matching and system FMR, «a,, and o, respectively, at the error cor-
recting threshold ¢. are related according to o, (tc, nc) = 28 ., (te, ne)-

Proof. The false-acceptance rate for the template protection system « ., depends on the
probability mass function (pmf) of the Hamming distance e = dy(f5, f3) a imposter
comparisons. As presented in [104] under the assumption that the bits of f§ across the
population are independent and uniform, the imposter Hamming distance pmf can be
modeled by the binomial density

Po(d; N,p) L (N)pt(1 — p)(¥=) (5.3)

with dimension N = n. and bit-error probability p = Pi™ = 1, where P™ is the
bit-error probability at imposter comparisons. Due to the single-bit extraction scheme
employing a quantization threshold that is equal to the background mean, the bit-error
probability P™ does not depend on either the number of enrolment N ., or verification IV,
samples. Hence, the false-acceptance ..., rate at threshold ¢, is the following sum of the
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binomial pmf

def L& ) '
an(tC7nC) :e E]Pb(l;nc,PeHn)
1=

e
=gz 2, (%)

i=
= %%(ncvtc)a

(5.4)

where Va(n,r) = > (%) isthe number of vectorsin a sphere with radius  in {0,1}".
i=0

An illustration of tﬁe binary vectors that will lead to a match at the verification phase is
depicted in Figure 5.2. Examples of «..,. (tc, n.) a severa BCH ECC settings are given
in Table 5.2. Increasing the codeword size n . decreasesthe FMR. Increasing the key size
k. and therefore decreasing the error-correcting capability ¢ ., also decreases the FMR.

As shown in Section 5.2.4, the FMR of the cross-matching classifier a ,, isthe prob-
ability that the XOR of the auxiliary data from two different subjects is decodable. As
defined in [40], under the assumption that the bits of f are independent and uniform with
Pm = % the o, isequa to the probability of randomly selectingawordw € g {0, 1}«
that is decodable, i.e. within ¢ bits of any codeword from C, namely

€ 2kc C»tc
s () 2 Pl (w,€) < 1) = 2 V2 erle)

(5.5)
Anillustration of the binary vectorsthat will lead to a match is shown in Figure 5.5. The
agy (teyne) is equal to the ratio of al possible vectors within the dashed circles with
respect to all possible vectorsin the {0,1}™ space. Examples of a,, (tc,n.) a some
BCH ECC settings are given in Table 5.2. Increasing the codeword size n . decrease
gy (te, ne), however increasing the key size k. does not always decrease oy, (tc, nc).
Note the special case of n. = 31 with [k.,t.] = [26, 1], where «,, = 1 because the
full {0, 1} spaceis decodable. Thus, this [n., k., t.] setting of the BCH ECC leadsto a
perfect code.

Table5.2: Examplesof o, and o, for differentn. € {127,63,31} and [k., t.] settings.

n. = 127
ke, t]|  [8,31] [22, 23] [36, 15] [78,7]
app |3.16-1079[8.48 - 10~ 14[7.89 - 10=20[5.57 . 10—28

acy |8:10 - 10~7{3.56-107 [ 5.42-1079 [ 1.68-10~%
n. = 63
(e tc]| [7.15] [ [16,11] 24,7] [45, 3]

app |1.88-107°]8.37-1078 [6.82-10~11[4.52 - 10— 1°

oy |2:41 - 1073 5.48- 1073 [ 1.14- 1073 [ 1.59 - 10~ T
n. =31
[kca tC} [67 7] [117 5} [167 3] [267 1]

app |1.66-1073]9.61-10=° [2.32-107° [ 1.49-10—®
acy [1.06-1071[1.97-10"1[1.52-107! 1.00
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Figure 5.5: Anillustration of the binary vectorsthat would lead to a match.

By combing the system FMR a., from (5.4) and the cross-matching FMR « ., from
(5.5) we obtain
Qom (tCa nC) = 2k Qrp (tCa nC)? (5.6)

which implies that the cross-matching FMR is 2%< times larger than the system FMR
under the assumption that the bits of f§ across the population are independent and uni-
form. O

False Non-Match Rate Relationship

Lemma5.2.3 (FNMR Relationship). Under the assumption that the bits of fg € {0.1}"<
are independent with equal bit-error probability P2°, given a balanced system where
N, = N, and a t.-error binary linear ECC, the cross-matching 3, at the error correct-
ing threshold ¢.. is smaller than the system FNMR ..., namely 8., (tc, nc) < Brp (tc, nc)-

Proof. For the template protection system, a false non-match occurs when ¢ =
du(fg, ) > t. a genuine comparisons. Similar asin Section 5.2.5, we model the pmf
of e with a binomial density with dimension n., however with bit-error probability P°.
The theoretical FNMR of the template protection system at threshold ¢, 5, (tc, nc), IS
the following sum of the binomial pmf

ﬁTP(tC7nC) « XC: Pb(i;nmpege)- (5.7)

1=tc+1
For the cross-matching classifier, 5., isthe probability that the XOR of the auxiliary data
AD, ; and AD, > from the same subject at different databases is not decodable, hence an
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non-match at a genuine comparison. Asdiscussed in Section 5.2.4, the decodability prob-
ability is determined by the Hamming distance between the binary vectors at enrolment,
namely e.,, = du(fg ;,fg ,). Because of the balanced system assumption the bit-error
probability is also equal P25, consequently the pmf of e, = du(fg ;,f5 ;) isequd to
the pmf of € = dy (£5, £3}) and for conveniencewe use e in the remainder of this section.
Asdiscussed in Section 5.2.4, thereis also a probability that when e > ¢, the XOR of the
auxiliary data ADg will aso be decodable and hence correctly labeled as genuine. We
define the decodability probability Pap,, (e;tc,C) as

Pao. (6:16,C) % P{d.(ADs,C) < t. | €} (5.9)

which has to be taken into account when estimating 3 .,, according to

N

Bers (terne) S0 (1—PA%(z‘;tc,C))Pba;nc,Psﬂ. (5.9)

i=te+1

Observe that 3, (tc,nc) from (5.9) is equal to 5., (tc,n.) from (5.7) when
1 — Papg (€;tc,C) = 1 for e > t.. Inother words Pap,, (¢; t.,C) = 0 stating that ADg,
should not be decodable for any cases of £5 and £ with error pattern of weight € > ¢..
However, 8., (tc,nc) < By (te, ne) if thereis at least one case of f§ and £ with error
pattern of weight e > t. where ADg is decodable. Hence, it suffice to prove that thereis
at least one case of £ and £ with error pattern of weight € > ¢, where ADg, is decodable.

Let the codebook beC = {C, Cz, C3} with minimum distance d = 2t. + 1, where
the codewords C; and C- are used in the enrolment phase of application 1 and 2, respec-
tively, and C3 = C; & C,. Note that the XOR of the auxiliary data can be rewritten as
ADg = (f5; ® C1) & (f5 , ® C2) = e & C3 with e = |[e|| and is decodable for the
e > t. casesonly if the error pattern can berewrittenase = e* @ C; with ||e*|| < ¢, and
C; € {Cy, Cy}. Hence, there are at | east two cases where AD g, with e > t. isdecodable,
namely the cases ADgq, = C; @ C3 or ADg, = Cs @ C3 where||e*|| = 0. O

Lemma5.2.3 only statesthat 3., (tc, nc) < Byp (te, nc) for any settings of ¢, and n.
In order to know the actual difference between 5., (tc,nc) and G, (tc, nc) we have to
determine Pap,, (¢; tc, C) given a specific codebook C. Assume we have an ECC with the
codebook C consisting of one codeword of weight 0 (C) and n. (C,,) and n,, code-
words C,, of weight w. Because of the properties of linear codes, each codeword hasn ,,
neighborsat adistance w and one codeword at adistancen .. Consider the case of being at
codeword Cy and having a binary vector w . with e errors with respect to Cg, hence hav-
ing the weight w,. There are n,, neighboring codewords at a distance of w bitsfrom C,
thus they have a weight of w. Furthermore, the error-correcting capability is equal to ¢ ..
The fundamental question we want to answer is the decodability probability of the binary
vector of w.. If itsweight w. iswithin the error-correcting capability t ., w. < t., we will
always be decodable with respect to C,. However, if w, > t. the binary vector w. will
not be decodable with respect to C but there is a probability that w . is decodable with
respect to one of the n,, neighboring codewords at distance w. w . will only be decodable
if its distance to the neighboring codewordsissmaller or equal tot ., i.e. ||[w. D Cy || < te.
In Section 5.2.3 we have discussed the probability P, . (€; w1, w2, n.) of the weight of
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Figure5.6: Pap, (€; te,C) valuesfor different ¢ settingsat n. € {31,63}.

the binary vector after XOR-ing two binary vectors of length n . and weights w; and
wa, respectively. Hence, the decodability probability with respect to the n ,, neighboring

te

codewords of weight w is equal t0 ny, Y Py xw(4; we, w, ne). Similarly, the decodabil-
=0

ity probability with respect to the codeword C,,, has to be included, which is equal to

tC
Z Pw><1u(i;we; N, nc)-

=0
For a general codebook C, the decodability probability at e errors, Pap,, (€;tc,C), is
given by
te
Papg (6tc,C) = Y. Ne(w) Y Puxw(i;e,w,ne), (5.10)
weWe =0
where ¢ is the set of the unique weights w of the codewords from C and the function

Ne¢(w) returns the number of codewords n,, with weight w, with >~ Ne(w) = |C|.
weWe
Some examples of Pap,, (¢;t.,C) for the BCH code we consider are portrayed in Fig-

ure 5.6 for n. € {31,63} and different ¢. settings. From these figures we can conclude
that whene > n. —t., ADg will always be decodabl e, because of the existence of acom-
plementary codeword at distance n. with respect to each codeword from C. Furthermore,
when n, = 31 at most ~ 20% of the caseswheret. < € < n. — t. are still decodable,
which is significantly decreased to ~ 0.6% when n. = 63. Some examples of 3., and
By for different n, € {31,63} and P&° € {0.20,0.15} settings are given in Table 5.3.
There is no significant difference between 3., and 3, for the n, = 63 case, however
thereis aclear differencefor then. = 31 case.

Per for mance Relationship

Conjectureb.2.1 (Performance Relationship). Under the assumption that the bits of f5 €
{0.1}"< are independent with equal bit-error probability P&° and P™ = % at genuine
and imposter comparisons respectively, given a balanced system where N, = N, the
cross-matching performance is worse than the system performance.
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With Lemma 5.2.2 we showed that FMR between the cross-matching and system is
related according to o, (te, n.) = 2%a,, (t, n.), where the cross-matching FMR is
2k worse than the system FMR. However, with Lemma 5.2.3 we showed that the FNMR
at cross-matching is better than the system FNMR, however the differenceis margina at
larger codeword lengths. In order to compare the overall performance we use the receiver
operating characteristic (ROC) curves as illustrated in Figure 5.7 for the n. € {31,63}
and P5° = 0.15 settings. The system performanceis given by the ROC labeled as TPy,
while the cross-matching performance is indicated by the points labeled with different
markers representing the different [k, t.] settings of the ECC. Note that a performanceis
considered as being better when it is closer to the upper-left corner of the graph. Because
the system ROC curve is clearly closer to the upper-left corner, we have shown that the
system performanceis better than the cross-matching performance.

5.2.6 Experiments

In this section we empirically estimate both the template protection system and cross-
matching performance based on afingerprint database in Section 5.2.6 and Section 5.2.6,
respectively. The biometric database, feature extraction and evaluation protocol are de-
scribed in Section 5.2.6.

Experimental Setup

Biometric Modality and Database The database we use isthe MCYT (Ministerio de
Cienciay Tecnologia) containing fingerprint images from a capacitive and optical sensor
as described in [128]. It contains 12 images of al 10 fingers from N, = 330 subjects for
each sensor. However, we limit our dataset to the images of the right-index finger from
the optical sensor.

Table 5.3: Comparison between 3., and §.,, for different n. € {31,63}, [k.,t.] and
Pge € {0.15,0.20} settings.

n. =31
[kc, te] [6,7] [11,5] [ [16,3]
pEe _ 15 | Bre | 0.0822 1 0.3173 | 0.7039
° ) Beonm | 0.0796 | 0.2749 | 0.5948
pEe _ .90 | Bre | 0-2700 [ 0.6069 [ 0.8930
© ’ Benm | 0.2598 | 0.5176 | 0.7592

n, = 63

[k, te] [7,15] | [16,11] | [24,7]
P — 015 Brp | 0.0215 | 0.2287 | 0.7471
€ ’ Bey | 0.0215 | 0.2283 | 0.7460
Brp | 0.1789 | 0.6246 | 0.9527
Bey | 01789 | 0.6231 | 0.9513

P& =0.20
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Figure 5.7: Performance comparison between the template protection system (TP4,) and
cross-matching performance (CM) for the (@) n. = 31 and (b) n. = 63 case, under the
assumption of independent bits with bit-error probabilities P/™ = 0.5 and P° = 0.15,
and abalanced system N, = N,. The suffix indicates ..

Feature Extraction Algorithms In order to compensate for possible translations be-
tween the enrolment and verification measurements, atrand ation-only pre-alignment step
is performed during the feature extraction process. Such pre-alignment requires extrac-
tion of the core point which is performed according to the algorithm described in [129].
Around the core point we definea 17 x 17 grid with eight pixels between each grid point.
The feature extraction algorithm extracts a feature value on each grid point. Our fea-
ture extraction algorithm failed to extract a feature vector from a single subject, so we
excluded it from the dataset, hence there are effectively Ny = 329 subjects.

The feature extraction method is based on the Gabor filter response, described in
[107], where each grid point is filtered using a set of four 2D Gabor filters at angles
of {0,Z,%,3%}, respectively. The feature vector is the concatenation of the modulus of
the four complex responses at each grid point, resulting into a feature vector dimension
of Ng = 1156.

Performance Evaluation Protocol The performance evaluation protocol consists of
randomly selecting 219 out of Ny = 329 subjects as the training set and the remaining
110 subjects as the evaluation set, which is referred to as the training-eval uation-set split.
To decorrelate the feature components we use the principle component analysis (PCA)
andthelinear discriminant analysis (LDA) techniques. The PCA and LDA transformation
matrices are computed using the training set, where Npca isthe reduced dimension after
applying the PCA transformation and Ny py is the reduced dimension after applying the
LDA transformation. Furthermore, the template protection system parameters such asthe
guantization thresholds, used within the Bit Extraction module, are also estimated on the
training set.

From the evaluation set we eval uate both the system and cross-matching classification
performance.
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e For the system performance evaluation, N, samples of each subject are randomly
selected as the enrolment samples while the remaining samples are considered as
the verification samples. The protected templateis generated using al the N ., enrol-
ment samples and compared with digoint groups of NV, verification samples where
the mean of the feature vectorsis taken prior to the bit extraction process.

o For the cross-matching performance evaluation, werandomly select N, samplesfor
the enrolment for the first application and another random N, samples for the sec-
ond application as such that we have distinct samplesfor each application. For each
application we create the protected template and compare all protected templates
using the cross-matching classifier.

This split of creating the enrolment and verification set or the enrolment set for appli-
cation one and two is referred to as the enrolment-verification split. If the verification
sampleis from the same subject as of the protected template, it is referred to as a genuine
comparison, otherwiseit is an imposter comparison.

Both the training-evaluation-set and the enrolment-verification splits are performed
five times. Note that the splits are performed randomly, however the seed at the start of
the protocol is always the same, hence all the splits are equal for the performancetests at
different settings. Therefore, the splitting process does not contribute to any performance
differences.

Template Protection System Perfor mance

We evaluate the template protection system classification performance using the evalua-
tion protocol in Section 5.2.6 with N, = 6 and N, € {1,6}. Thecasewhere N, = N, is
referred to as the balanced (TP},) case and the unbalanced (TP, ) case when N, # N..

The optimal Npca setting was found to be around 220 componentsand we set N1pa
equal to n. to evaluate the performance. Note that we assume the FCS construction to
act as a Hamming distance classifier as discussed in Section 5.2.3, hence we actually
evaluate the scores s, = € = d(f§, f) and limit the ROC curve at the threshold equal
to ¢t.. The ROC curvesfor n, € {31,63} settings are portrayed in Figure 5.8. For both
n. Settings, the balanced case has a better performance because taking the average of
N, feature vectors suppresses the noise during verification which significantly improves
the performance. Because of the BCH error-correcting limitation the FNMR is lower
bounded and the FMR is upper bounded. The performance of then . = 63 case is better,
however the BCH limitation has a greater impact on the FNMR and FMR. Note that the
estimated o, for both the balanced and unbalanced case are very similar, however they
deviate from the theoretical expectation presented in Section 5.2.5. At ¢ ., the estimated
FMR isten times larger for the n. = 63 case, while twice larger for the n, = 31 case.
The main cause of the deviating is the fact that the bits are still slightly dependent, while
the theoretic work assumed independent bits. We omitted the n. = 127 case due to the
limited dataset with respect to its small theoretic FMR at the maximum error-correcting
capability ¥, namely o, (t: = 31,n. = 127) ~ 3.16 - 10~°.
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Figure5.8: The ROC curve of the balanced and unbalanced and (TP,,) template protection
system derived fromthe s, = du(f§, fy;) scoresfor then. € {31, 63} settings. For the
balanced case we have N, = N, = 6, while N, = 6 and N, = 1 for the unbalanced
case.

Cross-M atching Performance Evaluation

As discussed in Section 5.2.6 for the cross-matching (CM) performance evaluation we
create two datasets containing the same subjects with N, = 6 distinct samples of each
subject. The two datasets represent the enrolment samplesfor the two applications. From
the each dataset we compute the binary vectors £ ; and f; ,, and auxiliary data AD> ;
and AD;, > from two randomly generated codewords C ; and C, respectively.

The cross-matching classifier from the decodability attack, as presented in Sec-
tion 524, is based on the property whether the XOR of the auxiliary data
ADg = ADy; @ AD,; is decodable, i.e. Dec(ADg) is successful, where Dec is the
ECC decoding function. When successful the classifier outputs a match, otherwise anon-
match. The decoding function of the BCH ECC we use does not return an error when it
is not decodable, but returns the first k. bits of ADg as the key instead. Therefore, we
compute the cross-matching distance score s ., 8s

= dgy (AD2,1,AD22)
= du(ADg, Enc(Dec(ADg))),

Som

(5.11)

where d,,, is the distance measure of the cross-matching classifier, and Enc and Dec
are the encoding and decoding function of the BCH ECC, respectively. Conseguently, we
can extend the cross-matching classifier beyond the decision of either match or non-match
with a score indicating how similar the comparisonis.

The cross-matching performance ROC curves (CM) are depicted in Figure 5.9 for
n. = {31,63} and different [k, ¢] settings. Because of the availability of a score value
instead of a decision, the ROC curves consist of multiple points instead of a single point
as in Figure 5.7, where the outmost right-upper point corresponds to the decision-based
performance. We aso show the ROC curve from the Hamming distance of the enrolled
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Figure5.9: The ROC curve of cross-matchingusing AD ; (CM) at different n. and ¢, indi-
cated by the suffix. As reference, the ROC curve correspondingto e ., = du(fg 1, f§ o)
isused and islabeled as CM*.

binary vectors, €,, = du(fg ;, {3 »), indicated by CM*. Note that the CM* ROC curve
is equal to the balanced system performance ROC curve TPy, from Figure 5.8. Thus
confirming the assumption made in Section 5.2.5 that the pmf of ¢ = d u(£5, f) is equal
to the pmf of e.,, = du(fg ;. f5 ). With Figure 5.9 we also experimentally validate
Lemma 5.2.1 dictating that the cross-matching performance is always worse than the
balanced system performance. Also note that the difference significantly increases when
t. is decreased and thus increasing k.. However, the cross-matching performance can
be better than the unbalanced system performance as shown by the comparison of the
TP, — 31 and TP, — 63 ROC curves from Figure 5.8 with the CM-7 and CM-15 curves
from Figure 5.9(a) and Figure 5.9(b), respectively. Hence, designing a balanced system
with N, = N, guarantees that the cross-matching performance is always worse than the
system performance itself.

For further analysis we show the comparison between the cross-matching Hamming
distance €_,, and distance score s, in Figure 5.10. These figures illustrate that for
both the genuine and imposter comparisons if ¢.,, < t. than s, < t.. Further-
more, from the imposter comparisons, notably for the n. = 31 case, we also observe
that whene_,, > n. — t. thanit holdsthat s.,, = n. — €.,,, because for each codeword
there also exists its complementary one with a distance of n. bits. For the case when
t. < € < ny—t, ADg isoccasionally decodableleading to ascore s, < t. with proba-
bility Pap, (€; tc, C) from (5.10) only when we can rewrite (f{_%h1 &) f§72) = C,; & e* with
[le*]| < t.and C; € C.

Also notethat the average of the scores s, , for the caseswhen ADg, is not decodable
and leading to ascore s, > t., decreaseswhen ¢ decreases. Because of the systematic
implementation of the BCH ECC and the fact that the decoding function of the ECC re-
turnsthefirst k. bits asthe key, guaranteesthat thefirst k. bits between the corresponding
codeword and AD 4, are ways equal while the remaining bitswill berandom. Hence, the

expected bit differenceis equal to Ze ke,
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5.2.7 Decodability Attack Resilience with Bit-Per mutation Random-
ization

We have shown that cross-matching is possible by using the decodability attack. However,
if the system is designed as such that it is balanced, namely N, = N,, the cross-matching
performance is always worse than the system performance, but still having a discrimi-
nating power. ldeally, it is preferred that the cross-matching performance is as close as
possible to random.

In this section we introduce a randomization module within the FCS construction
rendering the cross-matching performance close to random. Asillustrated in Figure 5.11,
prior to the XOR operation of the binary vector f5 and the codeword, we randomize £
by multiplying it with a bit-permutation matrix A, € II, obtaining g, = A,fg, where
A, isan. x n. matrix derived by randomly permuting the rows of theidentity matrix and
IT is the set of al possible permutation matrices. Because A, is an orthogonal matrix its
inverseisequal toitstranspose, A ! = A’. At each enrolment anew randomly generated
bit-permutation matrix is used and stored as auxiliary data AD 3 and is considered as
public. It isimportant to note that in the current approach the randomization matrix A  is
not considered to be secret, which isin contrast to earlier methods such as[89].

The XOR of the auxiliary data AD g can now be rewritten as

ADgy = (gg,®C1) @ (852 @ Co)
= (Amlfl%,l ® Am2f§,2) @ (C1eC2) (5.12)
=e D C37

withe, = ||ex|| = dH(Amlff,)J, Aroff5) = dH(ggl, gk 2) being the number of errors
after permutationinstead of €., = du(ff |, f§ ») when no permutation has been applied.
Because of the randomization processit islikely that at genuine comparisons more errors
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Figure 5.11: The code-offset system with randomization.

are introduced, namely e, > ¢.,,, hence decreasing the probability that ADg; is de-
codable, which significantly decreases when e, > t. (see Figure 5.6). As discussed in
Section 5.2.4, under the assumption of having independent bits with bit-error probability
P%° between genuine comparisons, the pmf of e can be modeled by a binomial distri-
bution with dimension n. and p = P2, namely Py, (e.,,; ne, P5¢). However, the pmf
of e, will depend on both the pmf of ¢, and on the effect of the permutation, which we
will analyze further. When the weight of the binary vectors f; ; and g , are w; and wo,
respectively, the probability of ¢, number of errors after randomizing them is thus equal
to Py xw (€5 w1, we, ) as discussed in Section 5.2.3. Hence, the expected probability
of e, irrespective of the weights P._(e,; P%°,n.) isthe average of Py, (€x; w1, w2, ne)
across all possible weights. The possible combinations of w; and w» depend on the num-
ber of errorse,,, between £ ; and ff ,. If wy and e, areknown than the probability of
wy isdetermined by Py, ., (w2; w1, €., , nc), because the error pattern can be considered
as another binary vector of weight e_,,. With the probability of randomly selecting a
binary vector of weight w, equal to P, (wy;nc, %), we obtain

cpge oy de SRS S .
Pﬁ‘n(eﬂ'vpe 7nc) == Z Z Z waw(€7r,’lU1,w2,TLC)><
€onm =0 w1 =0 wa=0 (513)

X Puxw (W23 W1, €4 e ) Po (W1 Nic, %)Pb(eCM i ne, PE°),

Figure 5.12 portrays the pmf of e, at genuine comparisons obtained with (5.13) for dif-
ferent settings of Pg° € {, 2, 1} andn. = {31,63}. Asareference we use the case
where e, israndom binary vector with the pmf of its weight defined by the binomia pmf
Py(ex;nc, %). The figures show that the expected pmf of €. is very close to the case of
being random, if either P&° and n. increases the difference becomes smaller. If Pg° = 1
the pmf of ¢, isegual to the case of being random.

Experimental results of the effects of the permutation randomization process, based
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Figure 5.12: The pmf of ¢, = du(gh ;. 8% ) from (5.13) at genuine comparisons for
settings of P£° € {15, =, 3} and n. = {31, 63} compared with a binomial distribution
Pb(€7r§ N, %)
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Figure 5.13: The pmf of ¢, = du(gp ;1,85 ) a both the genuine (Gen) and imposter
(Imp) comparisonsfor (a) n. = 31 and (b) n. = 63 settings.

on the same experimental setup from Section 5.2.6, are shown in Figure 5.13. We observe
that the pmf of e, at genuine comparisonsis close, however not equal, to the pmf at im-
poster comparisons, implying that it is difficult to distinguish a genuine comparison from
an imposter comparison. These results confirm the theoretical expectations presented in
Figure 5.12. Note that due to the fewer number of genuine comparisons than imposter
comparisons, the pmf for the genuine case is more noisy.

Finally, the cross-matching performance with the randomization process is estimated
based on the score s, from (5.11) and the results are shown in Figure 5.14. Fig-
ure 5.14(a) depicts the pmf of s, a genuine (Gen) and imposter comparisons (Imp)
for the n, = {31,63} settings. In contrast to the results in Figure 5.9 we aso include
the scores larger than ¢.. Both the genuine and imposter pmfs are very similar, hence
no distinguishing performance can be extracted by the adversary. The cross-matching
ROC curve for the n, = {31,63} settings are shown in Figure 5.14(b). As expected,
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Figure 5.14: (a) The pmf of s,, and (b) the cross-matching ROC curve on logarithmic
axesfor n. € {63,31}, and the comparison of s, against ., = du(fg ;, f§ ) for (c)
ne. = 31 and (d) n. = 63.

the ROC curves are close to the one of a random classifier whose ROC curve is defined
by 1 — 8 = «. Because of the limited genuine comparisons, the ROC curve for the
n. = 63 caselooksto be abit worse than the random classifier. Furthermore, the compar-
ison between s, and €.,, = du(fg ;, g ,) are portrayed in Figure 5.14(c) and (d) for
the n. = 31 and n. = 63 case, respectively. Due to the bit-permutation randomization
process, the relationship between s, and ¢_,,, as observed in Figure 5.10, no longer
exists.

I nverting the Randomization Process

The randomization process and the bit-permutation matrix A . ; stored as auxiliary data
ADj are considered as public. Hence, the adversary could apply the inverse on AD o,
namely A7 JAD, with A7 | = AZY | before applying the decodability attack on AD .

1
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With the inverse process AD g, becomes

AD@ = A;.r’lADQ,l ® A;—,QADQ’Q

w1(g881 @ C1) @ AL 2(gh 2 @ Ca2)
(A% 1 ARfE ) @ AL 5 A off 5) @ (A7 1C1 @ A 5Co)
(f5,1 ©f52) @ (A7 1C1 & A »,Cs),

(5.14)

with A7 A, = I. Note that due to the inverse operation, additional errors may be in-
troduced by the fact that both codewords are permuted by two different bit-permutation
matrices, namely (A7 ;C; & A/ ,Cs) € C. The additiona errors guarantee that the
cross-matching performance will be worse than the system performance. The only case
where no errors are introduced is when (A’ ,Cy @ Al ,C2) € C. We will show that
this probability is very small, and thus there isahigh pro’babi lity that the cross-matching
performance after taken the inverseis still worse than the system performance.

We will analyzethis problemin two steps. First, given the codebook C we estimate the
probability of obtaining a binary vector of weight w from (A’ ;C, © A, ,C»), defined
as P,-1(w;C). Hereafter, we estimate the probability that this binary vector is indeed a
codeword, namely P,-1(C).

With W defined as the set of possible weights w of the codewords from C and the
function N¢(w) returning the number of codewordsn ,, withweight w with >~ Ne(w) =

weWe
|C| = 2%, the probability P, (w;C) is equal to
Poi(w;€) = P{w=]|A%,Ci & AL ,Coll|
VC1,C2 €C, Ary, Ara €11}
= Z {waw(w;w17w27nc)x (515)
wo EWe
w1 EWe

where we take the sum, across all possible weights w; and w- of codewords C; and Cs,
of the product of Py, x ., (w; w1, we, n.) from (5.1) which is the probability that the XOR
of two random binary vectors of weightsw; and w- will lead to abinary vector of weight
w, and % which is the probability of randomly selecting two codewords of
weightsw; and wo from C. Figure 5.15illustrates P, (w; C) for different n. and [k, t.|
settings of the BCH ECC, compared with a binomial distribution Py, (w; nc, %). Note
that P,-1(w;C) is very similar to the binomial probability except at weights zero and
n., where the difference increases when ¢ increases. The weight, w = ||AL ;C; &
A7 ,Col| is zero when both ||C, || and ||Cy|| are zero or n., or equal to n when one of
the codewords has weight of zero and the other one n .. Both cases have the probability
Pr-1(0;C) = Pr-1(ne;C) = 5.

With P,-1(w;C) we can estimate the probability P,-1(C) of the occurrence where
no additional errors are introduced when the adversary appliesthe inverse, namely

P,a(C) EP{(AL,Cr1d AL,Co)eC|

VCi,C2€C,VAr1,Ar2 € H} (5.16)

= Z Pw_l(w;C)N'cn—(cw)7
e ()
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Figure 5.15: The probability of obtaining a binary vector of weight w = ||C 1 & A,Ca]|
givenby P.-1(w;C) from (5.15) for different n. and ¢. settings compared to a binomial
distribution Py, (e; ne, 0.5).

where Ne(w)

is the probability that the binary vector of weight w is a codeword. Some

examples of P.—1(C) for different n. and [k.,t.] settings are given in Table 5.4. At
smaller k. settings P,-1(C) is close to 55—, which is the probability of only selecting
codewords of either weight zero or n... For those cases, no additional errorsare introduced
by A7 ;C1 @ A} ,C2. The probability P-:(C) can be reduced even further by removing
these two codewords from the original codebook, thus obtaining the codebook C\{0,n . }.
The probability isthen givenby P,-1(C\{0, n.}) anditsvaluefor thesamen . and[k.,t.]
settings are given in Table 5.4. At smaller k. values, P,-1(C\{0,n.}) is significantly
smaller than P,-1(C). Hence, in order to be more robust against the inverse of the hit-
permutation process prior to the decodability attack, it is recommended not to use the
codewords of weight zero or n... The drawback is that the key spaceis reduced to 2% — 2,
which becomes negligiblefor larger k. values. However at larger k. valuesboth P,-1(C)
and P,-1(C\{0,n.}) convergeto each other. From the results of Figure 5.15, we observe
that at larger k. values it holds that P,-1(w;C) ~ Py(w;nc,3), consequently (5.16)
becomes

" @)
> Pb(w;nc,%)]v(‘fq,(%’)
weWe w
. (o) Ne(w) (5.17)
2nc nc
B, <m>
_Q"C Z Nc
weWe
:21%771@

which is the probability of randomly guessing a codeword from C. Empirical results
shown in Figure 5.16 confirm that inverting the randomization process prior to applying
the decodability attack does not give the adversary an advantage when using the decod-
ability attack, because the ROC curveis till close to random.
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Figure 5.16: The cross-matching ROC curve when applying the decodability attack after
inverting the randomization process on logarithmic axes for the n . € {63, 31} settings.

I neffectiveness of the Noise-Addition Randomization M ethod

We will show that not all randomization processes will work. For example, taking the

XOR of f§ with a random bit pattern §, hence obtaining g, = f & J does not work,

because this randomization process is fully reversible. When taking the XOR between

AD; ; and AD; > we obtain
AD2 1 @ ADa 2 (8,1 ® C1) ® (gh,2 @ C2)

((fﬁyl ®61)® (fg 2 ® d2)) ® (C1 @ Cz) (5.18)

(61 @ 02) ® (ff%,l &b f]%’g) @ (C1 @ Co)

Hence, it is sufficient to take the XOR of the auxiliary data AD+ with the publicly known
bit pattern ¢ prior to applying the decodability attack, namely

(61 ®AD2,1) ® (02 ®AD22) = (01 @ d2) ® (AD2,1 & AD22)

= (fg,1 ®f5.) @ (C1 & C2), (5.19)

Table 5.4: The probability P,-:(C) and P,-1(C\{0,n.}) for different settings of n. and
[keite].

ne. =31
ke, te] [6,7] [11, 5] [16, 3]
P._1(C) 9.7660 - 10~* [ 1.9103 - 10~° | 3.0521 - 10~ °
P__1(C\{0,nc})]|2.8424 - 10=% | 9.5271 - 10—7 | 3.0517 - 10—°
n. = 63
[kc, te] [7,15] [16, 11] [24,7]
P__1(0) 2.4414-10~%[9.3133 - 10-10[1.8332 - 10— 12
P__1(C\{0,nc})[1.3555 - 10~17|7.1052 - 10~ 15]1.8190 - 10~ 12
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because (61 @ d2) @ (91 ® d2) cancel each other out. Hence, the adversary obtains the
same error pattern (5, @ fg ,) ® (C1 © C2) with which cross-matching is possible as
shown in Section 5.2.4.

Effect on the Exhaustive Search Attack

In Section 5.2.4 we discussed both the decodability attack and the attacks based on ex-
haustive searches. With the bit-permutation process we reduced the effectiveness of the
decodability attack, however both exhaustive attack methods still exist. With the bit-
permutation process, the exhaustive search type of Case 1, where both the auxiliary data
AD, and Pseudonymous Identifier Pl are available, remains unchanged. By guessing
the codeword from PI, the permuted binary vector g, can be computed from which we
can obtain f§ by inverting the bit-permutation process with A .. However the exhaustive
search type of Case 2, where only the auxiliary data is available, changes. The exhaus-
tive search attack without the bit-permutation process as discussed in Section 5.2.4 hasto
search for a single codeword from the codebook C leading to the smallest distance score
Sey = Mincec||ADg @ C|| with an average effort around ~ 2%<~1. However, once the
codeword was found there was still an ambiguity about the binary vector f § of 2%« possi-
bilities. With the bit-permutation process, the XOR of the inverse of the auxiliary data of
(5.2) becomes

ADg = (fg;@ff,) & (47 ,C1 8 A7 ,Co), (5.20)

wherethe linear property of the ECC no longer holds asin (5.2). Instead of searching the
codebook C only once, al combinations of the permuted codewords A C; © A} ,Co
with known bit-permutation matrices has to be searched leading to the smallest distance
SCore s, = Ming, c,ec||ADg ® A7 1 C1 ® A ,Csl|. Thus, theeffort hassignificantly
increased towards ~ 2%*<—!. However, once the codewords C; and C, have been found,
the binary vector f§ is fully known. Hence, there is a trade-off between the case where
cross-matching with the effortless decodability attack is possible with protection of the
binary vectors or the case where cross-matching matching is possible with a significant
effort of 22%<—1 but revealing the binary vectors at a successful cross-match.

5.2.8 Conclusions

We analyzed the cross-matching performance of the auxiliary data AD > of the Fuzzy
Commitment Scheme (FCS). We showed two attacks based on an exhaustive search, re-
sulting in asignificant attack effort, aswell as arecently introduced attack requiring only
a single decoding operation of the ECC, known as the decodability attack. Both attacks
have the same cross-matching performance. To the best of our knowledge, the decodabil-
ity attack was first presented in [39] and theoretically analyzed in [40]. We extended this
theoretical analysis and showed the relationship between the balanced template protec-
tion system where N, = N, and the cross-matching performance. The FMR at cross-
matching is 2% larger than the FMR of the system, were k.. isthe key size of the ECC. On
the contrary, the FNMR at cross-matching is smaller than the FNMR of the system. How-
ever, the difference significantly decreases for larger n. values. When comparing both
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the FMR and FNMR in a ROC curve, we showed that the cross-matching performance
is clearly worse than the system performance. We empirically validated the presented
theoretical analysis using real biometric data from the MCY T fingerprint database. Con-
cluding, designing a balance template protection system with N, = N, guarantees that
the cross-matching performance is always worse than the system performance itself.

I deally, the cross-matching performance should be close to random. We provided a so-
Iution based on a bit-permutation randomization process that reduces the cross-matching
performance of the decodability attack very close to random under the assumption that in-
dependent samples are taken for each application. During the enrolment phase, a random
bit-permutation matrix is generated and used to permute the binary vector prior to creating
the auxiliary data. We can consider the bit-permutation matrix of the randomization pro-
cess to be publicly known because we have shown that the cross-matching performance
istill close to random even when inverting the bit-permutation randomization process.

We showed the following trade-off. Without the proposed bit-permutation random-
ization process the decodability cross-matching attack is effortless, however without re-
vealing the enrolled binary vectors. With the bit-permutation randomization process, the
decodability cross-matching attack is neutralized however cross-matching based on ex-
haustive search is still possible. The effort of the exhaustive search increased towards
22ke—1 instead of 2% when the bit-permutation randomization process is not applied.
However, the effort increase is obtained with a drawback, namely revealing the enrolled
binary vectors at a successful cross-match.
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5.3 Chapter Conclusions

The vulnerability of cross-matching based on the decodability attack published in[39,40]

indeed holds, however the cross-matching performance is worse than the classification
performance of the HDS when it is balanced, i.e. the number of enrolment and verifica-

tion samplesareequal (N, = N, ). Thecross-matching FMR isafactor 2% |larger thanthe
FMR of the HDS with k. being the key size, while the FNMR difference becomes negli-
gible within increasing feature dimension. The cross-matching performance based on the
decodability attack can be made close to random by introducing a bit-permutation matrix

randomization process that permutes the binary vector. Note that the bit-permutation ma-

trix is considered to be public data and has to be different for each application. Hence,

the effect of the cross-matching performance on the unlinkability property is negligible.

When implemented, what remains is the cross-matching based on exhaustive search with
an averageeffort of 22%—1 however more protection beyond the exhaustive search cannot
be guaranteed.



Chapter

Information Leakage Analysis of
the Bit Extraction Part

6.1 Chapter Introduction

In this chapter the second part of the third research question will be addressed, namely

Given the HDS template protection scheme: How does the information leakage
from the auxiliary data affect theirreversibility and unlinkability property?

More specifically, this chapter answers this research question for the bit extraction part
of the HDS of Figure 1.5. Firstly, in Section 6.2 we investigate the information leakage
that could be exploited by an adversary to improve its impersonation success rate by
increasing the FMR, thus affecting the irreversibility property. We focus only on the
Detection Rate Optimized Bit Allocation (DROBA) bit extraction scheme proposed in
Chen et al. (2009) [42]. We show with biometric data that the amount of information
that AD; leaks is enough to increase the adversary’s FMR by two orders of magnitude.
Furthermore, we analyze the cause of the information leakage and provide aremedy. The
main results are published in Kelkboom et al. (2009) [133] L.

Secondly, we study the cross-matching performance affecting the unlinkability prop-
erty of AD; of several bit extraction schemes that vary in the amount of subject-specific
information that is used. We investigate the relationship between the improvement of
the HDS performance by using more subject-specific information and the corresponding
cross-matching performance. Results are published in Kelkboom et al. (2010) [134] 2.

1E. J. C. Kelkboom, K. T. J. de Groot, C. Chen, J. Breebaart, and R. N. J. Veldhuis, Pitfall of the detection
rate optimized bit allocation within template protection and aremedy, in IEEE 3rd International Conference on
Biometrics: Theory, Applications, and Systems, 2009. (BTAS 09), 2009, pp. 1-8.

2E. J. C. Kelkboom, J. Breebaart, and R. N. J. Veldhuis, “Analysis of the system and cross-matching per-
formance of bit extraction schemes with template protection,” Submitted to EURASIP Journal on Advances in
Signal Processing, 2010.
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6.2 Pitfall of the Detection Rate Optimized Bit Allocation
within Template Protection and a Remedy

6.2.1 Abstract

One of the requirements of a biometric template protection system is that the protected
template ideally should not leak any information about the biometric sample or its deriva-
tives. In the literature, several proposed template protection techniques are based on bi-
nary vectors. Hence, they require the extraction of a binary representation from the real-
valued biometric sample. In this work we focus on the Detection Rate Optimized Bit Al-
location (DROBA) quantization scheme that extracts multiple bits per feature component
while maximizing the overall detection rate. The allocation strategy has to be stored as
auxiliary datafor reuse in the verification phase and is considered as public. Thisimplies
that the auxiliary data should not leak any information about the extracted binary repre-
sentation. Experimentsin our work show that the original DROBA agorithm, as known
in the literature, creates auxiliary data that |eaks a significant amount of information. We
show how an adversary is able to exploit this information and significantly increase its
success rate on obtaining a false accept. Fortunately, the information leakage can be
mitigated by restricting the allocation freedom of the DROBA algorithm. We propose
a method based on population statistics and empirically illustrate its effectiveness. Al
the experiments are based on the MCY T fingerprint database using two different texture
based feature extraction algorithms.

6.2.2 Introduction

The widespread use of biometric systemsintroduces new privacy risks, for exampleiden-
tity fraud or cross-matching. These risks can be mitigated by applying template protection
techniques. An overview of the privacy risks and template protection techniques are pre-
sented in [49]. A subclass of template protection techniquesis based on a transformation
of a biometric measurement to a binary vector as initial step. Hence, they require the
extraction of a binary representation from the real- valued biometric sample. In the lit-
erature, numerous quantization schemes have been proposed. They vary from a simple
method of extracting asingle bit per feature component [33] [34] to amore complex, mul-
tiple bits per feature component, extraction method [44] [42]. If the quantization scheme
is subject-specific the information has to be stored as auxiliary data for further use in the
verification phase.

One of the requirements of a template protection system is that the stored auxiliary
dataideally should not leak any information about the binary representation or the biomet-
ric sample itself. Hence, the subject-specific quantization scheme stored as the auxiliary
data should not reveal any information that may facilitate an adversary on increasing its
success rate guessing the binary representation of the biometric sample in order to obtain
afalse accept.

The work of [41] showed that the quantization schemes proposed in [135] and [136]
do indeed leak information that could be exploited by an adversary. Their attack model
is to guess the secret key in an off-line mode by using the auxiliary data and population
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statistics. They use the guessing distance, consisting of the number of attempts required
for a correct guess, as the measure of the degree of difficulty. Their results showed that
the guessing distance is much smaller than what is expected based on the claimed se-
curity in [135] and [136], respectively. We focus on the Detection Rate Optimized Bit
Allocation (DROBA) guantization scheme proposed in [42] that extracts multiple bits per
feature component. For each enrolled subject the optimization algorithm allocates the op-
timal number of bits per component while maximizing the overall detection rate. The bit
allocation strategy hasto be stored as auxiliary data for further use during the verification
phase.

Contribution: Our contribution is threefold. Firstly, we show that if the DROBA
guantization scheme is not correctly implemented it will leak information about the bi-
nary representation of the biometric sample. Secondly, we illustrate an attack method an
adversary could use in order to increase its success rate on reproducing a binary repre-
sentation that leads to a false accept. Instead of using the guessing distance, we use the
false-acceptance rate (FAR, «) as the degree of difficulty. We consider the template pro-
tection technique known as the helper-data system [33] [34] [35]. However, any template
protection technique incorporating the DROBA quantization scheme is susceptible to this
vulnerability. Thirdly, we outline a solution and propose an implementation guideline as
aremedy. The remedy significantly mitigates the information leakage and guarantees a
more private template.

The outline of this paper is as follows. In Section 6.2.3 we briefly discuss the consid-
ered template protection system with the DROBA quantization scheme. In Section 6.2.4
we describe our experimental setup concerning a fingerprint database, two feature extrac-
tion algorithms, and a testing protocol followed by the analysis of the information leakage
due to the improper implementation of the DROBA quantization scheme. With use of the
information leakage we demonstrate an attack method in Section 6.2.5 that significantly
increases the fal se accept probability. As aremedy, we propose an implementation guide-
linein Section 6.2.6 and show that it significantly mitigates the information |leakage. We
finish with the conclusionsin Section 6.2.7.

6.2.3 Template Protection Scheme with DROBA

Thetemplate protection technique under consideration is known as the hel per-datasystem
[33] [34] [35] and is portrayed in Figure 6.1. As input we have the real-valued feature
vector of dimension N, f € R™¥, which is extracted from the biometric sample by the
feature extraction algorithm. Subsequently, a binary vector fg € {0, 1}V is extracted
by the DROBA quantization module and outputs the first auxiliary data AD ; containing
the allocation strategy. Many template protection schemes are based on the capability of
generating a robust binary vector or key out of different biometric measurements of the
same subject. However, the binary vector f itself cannot be used as the key becauseit is
most likely not exactly the same in both the enrollment and verification phase (f§ # f3%),
due to measurement noise and biometric variability that lead to bit errors. The number
of bit errors between two binary vectors is also referred to as the Hamming distance
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Figure 6.1: Template protection scheme with DROBA implementation.

(HD) du(fg, £y). Therefore, ECCs are used to deal with these bit errors. As shown
in Figure 6.1, the ECC and hash function are integrated using the well-known Fuzzy
Commitment scheme [36]. For the sake of coherence we use the terminology proposed
in[102].

Within the fuzzy commitment scheme we use the linear block type ECC “Bose, Ray-
Chaudhuri, Hocquenghem” (BCH) that corrects random errors. The codeword C corre-
sponding to arandomly generated secret K is XOR-ed with the £ in order to obtain the
auxiliary data AD,. Furthermore, the hash of K is taken in order to obtain the pseudo
identity PI. In the verification phase this process is reversed with help of the auxiliary
data resulting into a candidate pseudonymousidentifier Pl *. Only when dy (£, f) < tc
then Pl and PI™* are equal, thus resulting into an accept. Hence, the Fuzzy Commitment
scheme can be considered as a HD-classifier. More details about the template protection
system can be found in [33] [34].

As mentioned previously, the binary vector f is extracted from the real-valued in-
put vector f by the DROBA quantization scheme and algorithm proposed in [42]. The
DROBA agorithm has the flexibility to extract multiple bits from a single component.
The number of bits extracted from component j is given by b ;. The quantization schemes
for the b; € {1,2,3} cases are shown in Figure 6.2(a), (b), and (c), respectively. For
conveniencewerefer theb; = 1 caseas by, and b3 and b3 for theb; = 2and b; = 3 cases,
respectively. The 2% quantization intervals are defined as such that the occurrence of each
interval is equiprobablewith respect to the total density, which we assume to be Gaussian
distributed p;, ~ N (us, o) with mean p, and variance af. The total density defines the
observed variability of that component across the whole population. Each quantization
interval is assigned a unique b; bits Gray code [137]. Furthermore, we model the ob-
served biometric variability and measurement errors of the feature vector component of
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a specific subject with the within-class density, which for simplicity is assumed to be an-
other Gaussian density py, ~ N (1w, 02). Note that y,, and o2 can be different for each
component or subject. From [42] the detection rate + is defined as the probability that the
next measurement of the feature component will bein the same quantization interval. For
component j the detection rate is computed as

v;(b;) = /Q . Pw(v)do, (6.1)

where @, (b;) isthe quantization interval corresponding to ., and also depends on the
number of bits b; to be extracted. Thus, the detection rate is the part of the within-class
density within the quantization interval corresponding to ., portrayed by the shaded
areain Figure 6.2. For the case where no bits are extracted (b ; = 0) the detection rate is
defined asy;(0) = 1. Note that the detection rate decreases when b ; increases. Under the
assumption that the Ny feature components are independent, the overall detection rateis
defined as
Nr
e =] 0))- (6.2)

j=1

The DROBA agorithm hasto create abinary vector of length N, henceit hasto allocate
Np bits across al components. We aso refer to Ny as the bit-budget. With use of the
multiple (N.) enrollment samples, the DROBA algorithm analyzes the subj ect-dependent
feature statistics (u,, and o2) of each component and allocates the optimal number of
bits b; to component ¢ with the constrains of maximizing the overall detection ratey; and
allocating the bit-budget Z;V:Fl b; = Np. Theoptimal allocation strategy is stored as aux-
iliary data AD; = [b1,bo, ..., bn;] fOr reuse at the verification phase. The optimization
isimplemented using the dynamic programming approach presented in [42].

6.2.4 Experiments

If the DROBA implementation is correct, auxiliary data AD; should not leak any infor-
mation about the enrolled binary vector f. We will empirically analyze whether there
is any information leakage by means of a fingerprint database and two feature extraction
algorithms. We first discuss the experiment setup including the testing protocol followed
by the information leakage analysis.

Experiment Setup

Biometric Modality and Database The database we use isthe MCYT (Ministerio de
Cienciay Tecnologia) containing fingerprint images [128]. It contains 12 images of all
10 fingers from Ny = 330 subjects. However, we limit our dataset to the images of the
right-index finger only.
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Figure 6.2: The total density p; with an example of a within-class density p., and the
corresponding detection rate «; at different quantization scheme where (a) b; = 1 (b7),
(b) b; =2 (b3), (c) b; = 3 (b3) bits are extracted.

Feature Extraction Algorithms Two types of texture based features are extracted from
a fingerprint, namely directional field and Gabor features. In order to compensate for
possible tranglations between enrolled and verification measurements, a translation-only
pre-alignment step is performed during the feature extraction process. Such pre-alignment
requires extraction of the core point which is performed according to the algorithm de-
scribed in [129]. Around the core point we definea 17 x 17 grid with eight pixels between
each grid point. The following feature extraction algorithms extract a feature value on
each grid point.

Thefirst feature extraction algorithm is based on directional fields. A directional field
vector describesthe estimated local ridge-valley edge orientation in afingerprint structure
and is based on gradient vectors. The orientation of the ridge-valley edge is orthogonal to
the gradient’s angle. Therefore a directional field vector that signifies the orientation of
theridge-valley edgeis perpendicular positioned to the gradient vector. In order to extract
directional field features from a fingerprint the algorithm described in [130] is applied
on each grid point. The direction field features have a dimension of Ny = 578 and are
referred to as the DF features.
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The second type of extracted features are the Gabor (GF) features, described in [107],
where each grid point is filtered using a set of four 2D Gabor filters at angles of
{0,Z,%,3%}. The feature vector is the concatenation of the modulus of the four com-
plex responses at each grid point, resulting into afeature vector dimensionof N = 1156.

Testing Protocol  The performance testing protocol consists of randomly selecting 220
out of Ny subjects as the training set and the remaining 110 subjects as the evaluation
set, which is referred to as the training-evaluation-set split. To decorrelate the feature
components we use the principle component analysis (PCA) and the linear discriminant
analysis (LDA) techniques, where the LDA transformation is also used to obtain more
discriminating feature components from which we expect to extract more bits from. The
PCA and LDA transformation matrices are computed using thistraining set, where N pca
isthe reduced dimension after applying the PCA transformation and N1p4 isthe reduced
dimension after applying the LDA transformation. To avoid singularities we ensure that
Nipa < 220. Furthermore, the template protection system parameters such as the quan-
tization thresholds, used within the Bit Extraction module, are al so estimated on the train-
ing set. From the evaluation set, 6 samples of each subject are randomly selected as the
enrollment samples while the remaining samples are considered as the verification sam-
ples. This split is referred to as the enrollment-verification split. The protected template
is generated using all the enrollment samples and compared with each individua verifi-
cation sample. When the verification sample is from the same subject as of the protected
template, it isreferred to asagenuine comparison, otherwiseit isan imposter comparison.

The training-evaluation-set split is performed five times, while for each of these splits
the enrollment-verification split is performed 3 times. From each enrollment-verification
split we estimate the 5., (the false-rejection rate (FRR, [3) at the targeted FAR of cvgoy =
0.1%) and the equal-error rate (EER) where the FAR is equal to the FRR. Note, that the
splits are performed randomly, however the seed at the start of the protocol is always the
same, hence all the splits are equal for the performancetests at different settings. Hence,
the splitting process does not contribute to any performance differences.

Analysis of the Information L eakage

First of al we empirically derive the {Npca, NLpa, N} setting leading to the opti-
mal performance in terms of 5i... We evaluate the performance for the settings of
Npca € {50,100,...,300} and N € {50,100, ..., min(Npca - bmax, 300)}, while
the Ny pa parameter is set to Nipa = min(Npca, 220) as discussed in Section 6.2.4.
Theachieved 3;.,, performancefor thedifferent { Npca, NiLpa, Vg } Settings are depicted
in Figures 6.3(a) and (b) for the DF and GF features, respectively.

For the DF features the optimal setting is achieved at {150, 150,100}, while at
{200, 200, 100} for the GF features. At the optimal performance settings, the error-rate
(o and 3) curves with respect to the relative Hamming distance (RHD) between £ and
fy is portrayed in Figure 6.4(a) and (b) for the DF and GF features, respectively. The 8 o,
is3.66% for the DF features and 2.30% for the GF features, while the EER is 1.49% and
1.29%, respectively.
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Figure 6.3: The f,, for different { Npca, NLpa, Np} settings for the DF and GF fea-
tures. The optimal performance for each case is indicated by both the black and white
star.

If the DROBA implementationis correct, AD; should not leak any information about
the enrolled binary vector 5. We know that AD; is a concatenation of b; of each fea
ture component, hence knowing b; should not leak any information about the actual b;
allocated bits. The allocated bits are equal to the Gray code assigned to the quantization
interval in which the sample mean p, of the subject is measured. Thisimplies that the
probability of each quantization interval across the population should be equal irrespec-
tive of b;. Hence, we analyze the probability of each quantization interval, referred to as
the probability mass function (pmf) of @, where we represent the quantization intervals
by a discrete random variable Q). For the b7 case the pmf is uniform, however for the b3
and b3 cases a significantly non-uniform pmf is observed, see Figure 6.4(c-f). For the b3
case roughly 66% of the cases 1.+, isfound to bein the outer quantization intervalsfor the
DF features, while 80% for the GF features. For the b} case it is around 87% for the DF
feature and around 96% for the GF features. Due to the cyclic nature of Gray codes, the
binary codes assigned to the outer quantization intervalsdiffer in only asingle bit. Hence,
if multiple bits are extracted it is an advantage for the adversary to randomly select the
binary code corresponding to one of the outer quantization intervals when guessing the
binary vector £5.

Inorder toillustrate at which { Npca, NLpa, Vg } Settings the most non-uniform pmf
of  isobtained, we define § as the difference between the average probability of the two
outer quantization intervals and the average probability of the remaining inner intervals.
Hence, the closer § is to zero the more the pmf is uniform and its maximum value is %
Furthermore, §- is defined for the b3 case and ¢3 is for the b} case. The ¢ valuesfor the
different settings are depicted in Figure 6.5. From the figures we can observe that the
non-uniformity is stronger when Ny decreases or Npca increases, which corresponds
to the cases where the DROBA agorithm has more freedom to allocate the N hits.
The maximum observed values are 6o = 0.256 and 63 = 0.458 of the DF features and
02 = 0.360 and 63 = 0.485 for the GF features. The pmf isclose to uniformwhen N ~
bmaxNpca, Which is the case where the maximum number of bits is mostly extracted
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Figure 6.4: The error-rate curvesfor and the pmf of ¢ for the b5 and b3 cases, for the DF
and GF features.

from each component. Note that at the optimal setting (indicated by the black and white
star) the non-uniformity is close to its strongest.

Furthermore, we define p(b%) to be the average probability that a bit is derived from
ab’ case. Thep(b%) probabilities are different for each { Npca, NLpa, Np} setting as
shown in Figures 6.6 for the p(b3) and p(b%) cases for the DF and GF features. Because
the sum of the probabilities is one, the probability p(b7) can be derived from p(b3) and
p(b%). Thefiguresshow that if N increases, more bits are extracted from the b3 case and
lessfromthe b} case. The number of bits extracted fromthe b case staysrelatively stable.
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Figure 6.5: The §, and ¢35 for different settings of Npca and Ny for the DF and GF
features. The optimal performance setting isindicated with both the black and white star.

For the optimal setting we have the probabilities p(by) = 0.345, p(b3) = 0.247, and
p(b%) = 0.408 for the DF features, and p(b7) = 0.304, p(b3) = 0.282, and p(b3) = 0.414
for the GF features, respectively. Note that the majority of the bits are extracted from a
multiple-bits extraction case, from which we know that information is leaked as shown
in Figure 6.5. More precisely, the largest portion of bits are extracted from the b % case,
which leaks the most information.

6.2.5 Exploitation of the L eakage

In the previous section we have shown that the information |eakage from the auxiliary
data AD; about the enrolled binary vector f§ is significant even at the optimal perfor-

Table6.1: Thep(b1), p(b3), p(b%), d2, 63 valuesfor the DF and GF features.

[Features[EER %] Brar B[ (0 [p(03) [p(3)] 02 | 05 |
DF 1.49 3.66 [0.345]0.247|0.408(0.1706|0.4106
GF 1.29 2.30 |0.304|0.282(0.414|0.3136|0.4727|
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Figure 6.6: The p(b3), p(b%) for different settings of Npca and Np for the DF and GF
features. The optimal performance setting is indicated with both the black and white star.

mance setting. However, it does not show what the actual practical advantage is for the
adversary. In this section we propose a simple method the adversary could usein order to
take advantage of the leaked information.

We consider the attack scenario wherethe adversary hasthe protected template, which
isthecollection of publicauxiliary dataAD 1, AD- and PI, of an unknown subject andtries
to obtain afal se accept by the biometric system. Asdefinedin[138] wefocuson the attack
level of “overriding the feature extraction process”. A possible attack method would be
adictionary attack, where a random image sample from a publicly available fingerprint
database is selected, its feature vector f is extracted and send to the next modules as if it
is authentic. The probability of an accept is equal to the FAR of the template protection
system, because the imposter comparisons in fact do represent a dictionary attack. In
our work, the targeted FAR is ato, = 0.1%, thus on average f = 1000 attempts are
expected in order to obtain a successful accept. v

In our proposed attack method we also consider the DROBA Quantizer module to be
compromised. Hence, the binary vector £ is generated and send to the next module. The
leaked information can be exploited in the following way. We change the DROBA Quan-
tizer module as such that if multiple bits are extracted (the b3 and b3 cases indicated by
AD;), werandomly select one of the two outer quantization intervalsand return the corre-
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Figure 6.7: The error-rate curves pmfsfor the (@) DF and (b) GF features when using the
proposed attack at the imposter comparisons.

sponding Gray code. Hence, if AD indicatesthat it isa b’ case, then either quantization
intervals 1 or 4 are selected with 50% probability and when it isa b case the quantization
intervals 1 or 8 are selected at random.

The attack results are given by the error-rate curves in Figure 6.7(a) and (b) for the
DF and GF features, respectively. Note that the attack is only carried out on the imposter
comparisonsand hence only the FAR curvesareinfluenced. Theoriginal FAR isindicated
with the “Orig” suffix, which is previously shown in Figure 6.4 and represents the case
where the attacker plainly selects arandom sample from the database for the verification
comparison without using any available knowledge and is the common FAR reported in
theliterature. For the attacks including the knowledge of the information |eakage, wefirst
study the method where only the information leakage from the b5 cases are exploited,
hereafter we consider the method where only the b3 cases are exploited, and as the last
method both the b3 and b3 cases are exploited. These attack methods are indicated with
the suffix “b5", “b3”, and “All”, respectively.

The operating point of a biometric system is determined using the a-Orig curve. The
closest operating point ¢,, where the FAR reaches the targeted ooy = 0.1% without
exceeding it, is portrayed with the solid vertical line. The operating pointisat aRHD =
0.22 with oo = 8.71-1072% for the DF featuresand RHD = 0.23 with o = 6.56 - 10 2%
for the GF features. The FAR obtained at the operating point for the different attack

Table 6.2: The operating point ¢,,, at a,, Of the original case and the FAR obtained at the
different attack scenario.

Orig case FAR at t,p at attack scenario

Features | top [RHD] = aar [%] by [%] [ b5 [%] [ All[%]
DF 0.22 8.71-107218.23-10—2 [ 1.89 5.78
GF 0.23 6.56-10"2 | 1.84-10~1 | 1.97 7.75
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Figure 6.8: The detectionratey for different values of 1, for the(a) b3, (b) b3, (c) b% case
with different feature qualities Hg € {1, 2, 3,4}.

methods are given in Table 6.2. The results show that «-b% is larger than «-b3, which
confirms the fact that the information leakage of the b3 cases is significantly larger than
of the b3 cases. Furthermore, the advantage of the adversary is further increased by using
the information leakage of both cases, because a-All is even larger. Hence, the largest
achieved « is 5.78% for the DF features and 7.75% for the GF features. For the DF
features the FAR has increased with a gain factor G, = 66, while for the GF features
G, = 118. Thus, for both features the adversary gain is around two orders of magnitude.
The necessary effort for the adversary to obtain an accept has significantly decreased
from on average 1148 attempts to 17 attempts for the DF features and from 1524 to 13
for the GF features. Hence, the gain factor GG, can be seen as the gain of the adversary by
exploiting the information leakage.

6.2.6 An Implementation Guideline as Remedy

In the previous section we have shown that if no precaution is taken, an adversary with

knowledge of the DROBA implementation could significantly increaseits fal se-acceptance
rate with two orders of magnitude by exploiting the information |eakage embedded in the

auxiliary data AD of the protected template. In this section we will address the cause
of the information leakage and propose an implementation guideline for mitigating the

|eakage.

The Cause

Recall the fact that the DROBA algorithm is allowed to extract multiple bits from all
feature components of f, irrespective of its discriminating power or quality. Using the
Gaussian model for describing the feature distribution of f (see Section 6.2.3), we can
analyze the detection rate at different subject’'s mean p, for the b3, b5, and b} cases and
at different qualities of the feature components. As a measurement of the feature quality
we use the Gaussian channel capacity or entropy H ¢ as defined in [126]

He = Llog, (1 + %) , (6.3)
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which only depends on the ratio g—§ and where o{ is the variance of the between-class
Gaussian density py, describing the variability of the mean 1, across the population and
o2 isthe variance of the within-class Gaussian density p.,.

Assuming the total density p;, to have aunit varianceand using o2 = o2 + o wecan
rewrite Hg as

1 c2—o2
Hg = 3logy (1+ taaw)
= %log2 é) (6.4)
= —logy(ow).

Hence, feature componentswith Hg = 1 have awithin-class standard deviation of o, =

55 = 3. Similarly for thecases Hg = [2,3,4] wehave oy, = [1, 3, 15, respectively.

Using (6.1) the detection rate ~y for different values of p, for different b cases and
feature qualities He € {1,2,3,4} are shown in Figure 6.8. Note that the quantization
intervals are fixed because of the unit variance assumption of p. The figures show that
for the b3 and b3 cases the maximum detection rate v for the inner quantization intervals
are much lower than for the outer intervals, because the width of the inner quantization
intervals are much smaller in order to be equiprobable with respect to the total density.
The detection rate difference between the inner and outer quantization bins depend on the
feature quality Hg and onthe b’ case. A larger -y differenceis observed for smaller H¢
values and when more bits are extracted.

As discussed in Section 6.2.3, the DROBA a gorithm maximizes the overall detection
rate v, as given by (6.2). Due to the optimization criteria, the DROBA algorithm tends
to allocate multiple bits mostly for the cases where the subject’s mean ., isin the outer
guantization intervals due to the larger v values. This behavior is stronger for the lower
quality feature components because v is significantly larger for the outer quantization
intervals as shown in Figure 6.8.

We illustrate the non-uniformity effect introduced by the DROBA algorithm with the
following simplified case. Consider the case where there are three feature components of
equal quality of Hg = 2 from which four bits (Ng = 4) have to be extracted and only
two bits are allowed to be extracted from each component (b5 case). Assume, the first
component analyzed has a detection rate of v; = 0.8. The probability that the next com-
ponent has a detection rate - larger than threshold ~¢1,, = 71 IS portrayed by the shaded
area of the p; density shown in Figure 6.9 which is Pr(y2 > ~tny) ~ 0.5. Note that
the probability of each quantization interval is not equiprobable. For the outer quantiza-
tion intervals we obtain p(q1) = p(q4) = 0.38, while for the inner quantization intervals
p(q2) = p(g3) = 0.12. Hence the differenceis d = 0.26. If it turnsout that v2 > ~iny,
then when analyzing the third component the threshold becomes ~y ¢, = 2. Because of
the larger 4y, for the third component, the probability of obtaining a higher v in one
of the quantization intervals becomes more uniform and § - is thus larger. Note that this
effect is stronger for lower quality feature components with a smaller H ¢ or when more
bits are extracted.
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The Remedy: Restricting DROBA

As remedy we propose to restrict the DROBA algorithm. The maximum number of bits
bmax that the DROBA agorithmis allowed to extract from a component should depend
on the overall feature quality of the corresponding component. For each component, we
compute the overall feature quality using (6.3) where we take the average of the subject
dependent within-class variance across the population. We introduce the thresholds 6 #, »
and 0, 3, Wwhere § g, » defines the minimum overall feature quality requirement of the
component for extracting two bits and similarly ¢ z, 3 for the case of extracting three
bits. We empirically estimate the optimal threshold settings that minimize theinformation
leakage, i.e. induce § and d3 to be closeto zero. The d, and 63 valuesfor different d g, 2
and ¢ g, 3 Settings are shown in Figure 6.10 for both features. For the § » case we obtain
02 =~ 0 by setting d 7, 2 = 2.35 for the DF featuresand 0 i, » = 2.95 for the GF features.
However, for the §5 case it does not reach zero. By increasing ¢ i, 3 even further has the
consequence that there are only afew b3 cases, even less than one case per subject for the
GF features as shown by Figure 6.10(f). Eventually we select 6 g, 3 with the biggest drop
inds, whichisat 6, 3 = 4.05 for the DF featuresand d g7, .3 = 4.15 for the GF features.

We implement the proposed remedy to the DROBA agorithm and evaluate the per-
formance and information leakage on the optimal performance setting obtained in Sec-
tion 6.2.4 of {150, 150,100} and {200, 200,100} for the DF and GF features, respec-
tively. The pmf of @ for the b5 and b3 cases, and the error-rate curves are shown in
Figure 6.11. The pmf of @ for the b3 case for both the DF and GF features are very close
to uniform, while for the b% case they tend to become more uniform. Because the thresh-
old d 3 was limited, otherwise no bits would have been extracted from a b} case, the
pmf of @ is not uniform.

Comparing the error-rate curves, we observe that the 3-Remedy curve has shifted to
the right compared to the origina curve, 5-Orig. However, the a-Remedy curve has also
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Figure 6.10: The 02, 3, and p(b3) for different settings of 6, 2 and d g, 3 for the DF
and GF festures.

shifted to the right with the consequent that the EER and 3, valuesarevery similar to the
original case, namely 1.76% and 3.87% for the DF features, and 1.27% and 2.17% for the
GF features. The FRR curve shift can be caused by the fact that the DROBA algorithm
is restricted by the proposed remedy. The allocation strategy may then be sub-optimal
for the performance. The shift of the FAR curve can be explained in the following way.
Note that the variance of p; islarger during the verification phase, because there are less
verification samples than enrollment sampl es, while the quantization intervals are defined
equiprobable on the p; during the enroliment phase. Hence, when randomly selecting
fingerprint images at the verification comparisons the outer quantization intervals are al-
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and GF features.

ways more probable. When using the original DROBA algorithm, the outer quantization
intervals during the enrollment phase are also more probable (the information leakage we
have shown). Consequently, there are less bit errors at the imposter comparisons leading
to alarger FAR at the same operating point. In other words, it is easier to find a random
fingerprint image that leads to an accept. When applying the DROBA remedy, the quan-
tization intervals during the enrollment phase become more equiprobable, consequently
eliminating the previously mentioned effect, therefore decreasing the FAR at the same
operating point. Furthermore, the a-Attack obtained when using the proposed attack
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method did not increase with respect to a-Remedy, it has actually decreased. Hence, the
adversary does not gain any advantage by using the proposed attack when the DROBA is
correctly implemented. The decrease of the a-Attack can be explained by the fact that the
attack method does not consider the correlations between the feature components when
randomly guessing one of the outer quantization intervals for the b 5 and b3 cases.

6.2.7 Conclusions

In this work we have shown that great care has to be taken when designing an DROBA
guantization scheme in order to guarantee that its auxiliary data does not leak any infor-
mation about the binary representation of the biometric sample. If no careis taken, the
information leakage can be significant and an adversary is ableto exploit thisinformation.
We have shown that the adversary is able to increase its success rate of obtaining an false
accept by two orders of magnitude.

Fortunately, there is a solution to mitigate the information leakage. We proposed
a remedy which in fact is a guideline on how to restrict the allocation freedom of the
DROBA agorithm. The maximum allowed bits to be allocated to each component has to
depend on the overall feature quality across the population of that component. We empiri-
cally estimated the minimum overall feature quality boundariesfor allocating two or three
bits, respectively. Given the biometric database and the feature extraction algorithms, the
proposed remedy significantly reduced the information leakage without influencing the
performancein terms of the EER or the FRR at the targeted FAR of the biometric system.
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6.3 Analysis of the System and Cross-Matching Perfor-
mance of Bit Extraction Schemeswith Template Pro-
tection

6.3.1 Abstract

Thefield of template protection focusses on safeguarding the privacy and security of the
stored reference template within a biometric system. Many of the template protection
schemes require the extraction of a binary representation from the biometric sample. Be-
cause the extracted features from biometric samples are in many cases real-valued, it is
necessary to design abit extraction processfor the conversionto abinary vector. Different
types of bit extraction schemes have been proposed in the literature, including schemes
that use subject-specific statistics to determinethe bit allocation strategy in order to extract
amorerobust binary vector. If the bit extraction schemeis subject-specific, auxiliary data
hasto be stored as part of the protected template. In thiswork we (i) demonstrate that the
use of subject-specific bit extraction schemes can improve the system performance, (ii)
show that the auxiliary datathat has to be stored can be used for cross-matching subjects
between different applications and compare the system and cross-matching performance
for different bit extraction schemes, (iii) show that reconstructing the bit allocation strat-
egy from the verification samples significantly deteriorates the system performance, and
(iv) investigate whether the system performance can be improved by fusion of the system
and the cross-matching performance.

6.3.2 Introduction

The plethora of passwords that we have to remember for our work or daily life is often
leading to frustrations. According to the studies [5] [6], roughly 20% of the participants
have to remember 15 or more passwords for their job, while roughly 35% to 57% have
between six and 15 passwords to remember. Overal, 82% of the participants are frus-
trated with managing their passwords. On top of the passwords used at work, there are
also many passwords necessary for private use, for examplefor social networking or com-
mercial websites. It would be much more convenient to replace the use of passwords with
biometrics as proposed in [139]. In contrast to passwords it is not possible to “forget”
your biometric data.

However, the widespread use of biometrics increases the security or privacy risks
such as (i) identity fraud, (ii) limited-renewability, (iii) cross-matching, and (iv) (sensi-
tive) medical information leakage. In case of identity fraud an adversary impersonates
the genuine subject by some spoofing mechanism. Limited-renewability implies the lim-
ited capability to renew a compromised reference template due to the small number of
biometric instances, for examplewe only haveten fingers, two irises or retinas, and asin-
gleface. Cross-matching refersto the ability of linking reference templates of the same
subject across databases of different applications. It is known that biometric data may
reveal the gender, ethnicity, or the presence of certain diseases [20-22].

To mitigatetheserisks, numeroustemplate protection methods such asthe Fuzzy Com-
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mitment Scheme (FCS) [36], Helper Data System (HDS) [33-35, 43, 48], Fuzzy Extrac-
tors [64, 65], Fuzzy Vault [80, 84] and Cancelable Biometrics [59] have been proposed in
the literature.

Several of the proposed template protection schemes depend on the extraction of a bi-
nary vector from the biometric sample. Figure 6.12 depicts a generic template protection
scheme that contains a bit extraction scheme. In the enrolment phase the feature extrac-
tion algorithm extracts a real-valued feature vector f¢ € R™N* of Ny components from
each of the N, enrolment biometric samples. From the N, feature vectors, asingle binary
vector £5 € {0, 1}V is created within the Bit Extraction Generator module. Note that
the size of the binary vector Ny can differ from the size of the real-valued feature vector
Nr. The bit extraction scheme could be subject-specific and therefore has to store some
auxiliary data AD as part of the protected template for use in the verification phase. We
refer to AD; as the bit extraction auxiliary data. The fina step in the enrolment phase
is the protection of the binary vector f5 by the Bit Protection Generator module whose
output is the protected version of the binary vector, namely [f5].

In the verification phase, the feature extraction algorithm extracts f ¥ from each of the
N, verification samples. The Bit Extraction Reproduce module derives the binary vector
£ with help of the stored auxiliary data AD; from the enrolment phase. The binary
vector £}, together with the protected version of the enrolment binary vector [f 3] are used
within the Bit Protection Comparator module in order to derive the decision of either a
match or a non-match. Because of this generic approach, all template protection schemes
mentioned earlier can be considered as long as they have a binary vector as input. The
protected template thus entails the pair AD; and [f§]. We assume that the classification
performance of the template protection scheme, referred to as the system performance,
to be equal to the classification performance of the binary vectors. For example, this
assumption holdsfor the fuzzy commitment scheme if the Hamming distance between f §
and £ is smaller than the error-correcting capability of the ¢ .-error error-correcting code
(ECC).

In the literature, numerous bit extraction schemes have been proposed in order to ex-
tract morerobust bits. The proposed bit extraction schemesvary from methodsthat extract
asingle bit per feature component [33-35, 43] to more complex, multiple-bits extraction
methods [42,44]. The bit extraction scheme from [33-35], also known as reliable compo-
nent selection (RCS), selects and publishes the most reliable componentsfor each subject
in order to extract bits that are more robust. The quantization index modulation (QIM)
bit extraction scheme from [43] shifts the binarization intervals according to the sub-
jects mean and publishes the required offset. The multi-bits extraction scheme from [42]
determines and publishes the number of bits to be extracted based on the detection rate
optimized bit allocation (DROBA) algorithm using quantization interval sthat are subject-
independent, while the scheme from [44] adapts the quantization intervals according to
the statistics of the subject similarly to the work of [45].

Due to the subject-specific characteristic of the bit allocation strategy, auxiliary data
AD; has to be stored as part of the protected template for use in the verification phase.
Consequently, there is a risk that the auxiliary data may be used for cross-matching as
shownin [43].



6.3. Analysisof the System and Cross-M atching Performance of Bit Extraction
Schemes with Template Protection 167

Enrolment Verification

fe fv

ﬁ AD; o AD,
Bit Extraction Bit Extraction
Generator l Reproduce

f5

fg
(6] 6] Match/
Bit Protection B B Bit Protection |Non-Match
Generator Comparator
SN ——

Figure 6.12: Template protection scheme including a Bit Extraction module.
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Contributions: In this work we have four contributions. Firstly, we demonstrate that
the use of subject-specific information can improve the system performance. Secondly,
we determine the cross-matching performance of the bit extraction auxiliary dataand il-
lustrate the difference between the system and cross-matching performance with respect
to the number of enrolment and verification samples. Thirdly, we show that reconstruct-
ing the bit allocation strategy from the verification samples, in order to prevent cross-
matching, significantly deteriorates the system performance. Fourthly, we investigate if
the system performance can be improved by fusion of the system and the cross-matching
performance. We focus mainly on the RCS and DROBA hit extraction schemes because
they can be considered as a family, namely as auxiliary data they store only the number
of bits that have to be extracted. Furthermore, it was shown in [41] that the auxiliary
data of bit extraction scheme of [44] leaks a significant amount of information about the
extracted binary vector f5. With this known vulnerability, the adversary could easily in-
crease its success rate of impersonation. A similar vulnerability was also discovered for
the DROBA scheme in [133], however they also proposed a remedy which we incorpo-
rate.

The outline of this paper is as follows. In Section 6.3.3 with discuss the different
bit extraction schemes that we analyze. The schemes vary in the amount of subject-
specific information that they used. In Section 6.3.4 we discuss the different dissimilarity
scores that could be used for cross-matching based on the bit extraction auxiliary data
AD;. We present the experimental resultsin Section 6.3.5 for both the system and cross-
matching performance. Section 6.3.6 investigates the possibility of reconstructing AD
using the biometric samples in the verification phase. Furthermore, Section 6.3.7 deter-
mines whether the system and cross-matching scores can be fused in order to improved
the classification performance. We conclude with the discussion and conclusionsin Sec-
tion 6.3.8.
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6.3.3 Bit Extraction Schemes

We consider three types of bit extraction schemes, namely (i) the simple binarization
scheme (SimpBin), (ii) the reliable component scheme (RCS) [33] [34], and the detec-
tion rate optimized bit allocation (DROBA) scheme [42]. Each bit extraction schemeis
described in more details.

Simple Binarization

In case of the simple binarization scheme, referred to as SimpBin, asingle bit is extracted
from each component of the real-valued feature vector f € R V¢ implyingthat Ny = Np.
An illustration of the binarization scheme is depicted in Figure 6.13(a). We model the
observed biometric variability and measurement errors of the feature value of a specific
subject with the within-class density, which we assume to be a Gaussian density p,, ~
N (pw,02) with mean p,, and variance o2. Note that the mean and variance can be
different for each component or subject. We use a single bit binarization scheme based
on thresholding, where the quantization threshold ¢ is equal to the mean of the adjusted-
total density, which we assume to be Gaussian distributed p; ~ N (u,02") with mean
1 and variance JE* and adjusted for the averaging of the N, enrollment samples. The
adjusted-total density defines the observed variability of the real-valued feature, averaged
from N, enrolment samples, across the whole population. The variance of the adjusted-
total density iso?” = o + ‘J’\,—VZV where the Gaussian between-class density with variance
o2 models the variability of the mean ., across the whole population.

In order for the enrolment bits to be uniform, i.e. the probability of abit valueof ‘0’ is
equal to ‘1, thethreshold is set equal to the mean of adjusted-total density. Consequently,
the threshold creates two binarization intervalslabeled ‘1" and ‘2, respectively.

Reliable Component Selection

The reliable component selection (RCS) scheme selects the Ny most reliable compo-
nents based on the detection rate of each extracted bit. Similar to the simple binarization
scheme, a single bit is extracted from each component of the real-valued representation
of the biometric sample f € RV, therefore Ny > Ng. The most reliable components
are the ones having a larger detection rate. From [42] the detection rate ~ is defined as
the probability that the next measurement of the feature component will result in the bi-
narization interval @, corresponding to the mean ., of the within-class density p,, of
the subject as portrayed in Figure 6.13(a), more formally

v = /Q pw (v)dv. (6.5)

Hw

Hence, the detection rate v isthe part of the within-class density within the selected quan-
tization interval in the enrolment phase as portrayed by the shaded areain Figure 6.13(a).
For the single bit extraction case, an equivalent method of determining the most reliable
component is by means of the z-score. For each component the z-scoreis estimated asthe
ratio between the distance of the estimated mean with respect to the binarization threshold
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and an estimated standard deviation, namely z = '“ d [33]. If the standard deviation is
estimated from the N, enrolment samplesand is therefore subject-specific werefer to the
bit extraction scheme as RCS-E. If the standard deviation is estimated from the training
set, where we assume each subject to have the same within-class variance, we refer to
the bit extraction scheme as RCS-T. The Ny components with the largest z-score are
selected and stored as auxiliary data AD| = [by, ba, . . ., by, ] With b; € {0,1}. If com-
ponent j is selected, its corresponding index b ; is one, otherwise zero. Thereforeit holds
that >-2'°, b; = Np.

Detection Rate Optimized Bit Allocation

The detection rate optimized bit allocation (DROBA) hit extraction scheme as proposed
in [42] has the flexibility to extract multiple bits from a single component. The number
of bits extracted from component j is indicated by b ;. The quantization intervals for the
b; € {1,2,3} cases are shown in Figure 6.13(a), (b), and (c), respectively. For conve-
nience we refer the b; = 1 case as b7, and b3 and b3 for the b; = 2 and b; = 3 cases,
respectively. The 2% quantization intervals are defined as such that the occurrence of
each interval is equiprobable with respect to the adjusted-total density py. By using the
adjusted-total density we can guarantee that the bits extracted in the enrolment phase are
uniform. Each quantization interval is assigned a unique b ; bits Gray code [137]. As-
suming the within-class density to be Gaussian, p,, ~ N(uw, 02), and the quantization
interval corresponding to 1., is selected in the enrolment phase, the detection rate y; for
component j computed as

~;(b5) :/Q . )pw(v)dv, (6.6)

where @, (b;) is the quantization interval corresponding to s+, and for the DROBA
scheme also depends on the number of bits b ; to be extracted. For the case where no bits
are extracted (b; = 0) the detection rate is defined as v, (0) = 1. Note that the detection
rate decreases when b; increases.
Under the assumption that the Ny feature components are independent, the overall
detection rate is defined as v
v =T (6.7)
Jj=1

The DROBA agorithm hasto create abinary vector of length N g, henceit hasto allocate
N bits across al components. We aso refer to Ny as the bit-budget. With use of the
multiple (N.) enrollment samples, the DROBA algorithm analyzes the subject-dependent
feature statistics (i1, and o2) of each component and allocates the optimal number of
bits b; to component j with the constrains of maximizing the overall detection rate .,
from (6.6) and allocating the bit-budget ZNF b; = Ng. The optimal allocation strategy
is stored as auxiliary data AD; = [b1, ba, . . bNF] for use at the verification phase. The
optimizationisimplemented using the dynami € programming approach presented in [42].

In practice, the mean 1, and variance o2 have to be estimated for each subject and
component. If the variance is estimated from the NV enrolment samples we refer to the
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Figure 6.13: The adjusted-total density p; with an example of a within-class density
pw Where (@) b; = 1 (b7), (b) b; = 2 (b3), (c) b; = 3 (b3) bits are extracted. The
corresponding detection rate v ; is portrayed by the shaded area.

bit extraction scheme as DROBA-E. If the variance is estimated from the training set,
where we assume each subject to have the same within-class variance, we refer to the bit
extraction scheme as DROBA-T.

The work in [133] shows that if the original DROBA agorithm as presented in [42]
is used, its alocating strategy stored in the auxiliary data AD; may leak information
about the extracted binary string 5. If multiple bits are extracted, it is most likely that
the mean of the subject lies in the outer quantization intervals. Because, neighboring
Gray codes differ in only one bit, approximately b; — 1 bits are revealed. As shown
in [133] this information leakage could be simply exploited by an adversary to increase
its rate of successto impersonate another person by two orders of magnitude. In thiswork
we use the updated DROBA allocation algorithm to prevent this information leakage as
presented in [133]. The prevention is based on limiting the DROBA allocation algorithm
from extracting more bits if its overall feature quality defined by the Gaussian capacity
does not exceed a given threshold. It is allowed to extract two bits when the feature
quality exceeds the threshold ¢ i, » and three bits when larger than 6 i, 3. We use the
same thresholds that were empirically estimated in [133].
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Figure 6.14: The cross-matching attack scenario between two application databases that
are accessible by the adversary. For our work we only assume that bit extraction auxiliary
dataAD; is stored in the database accessible by the adversary, while the protected binary
vector [f§] is assumed to be securely stored and not accessible.

6.3.4 Cross-matching Performance

In this section we discuss the cross-matching possibilities concerning the bit extraction
auxiliary data AD; from the presented bit extraction schemesin Section 6.3.3. Our cross-
matching scenario is depicted in Figure 6.14. We consider to have two applications us-
ing identical template protection schemes with their own centralized storage, where the
auxiliary data for the first and second application is referred to as AD;,; and AD; », re-
spectively. We consider only the auxiliary data AD; to be accessible by the adversary
from which the adversary tries to find subjects that are enrolled in both applications.
Between each database, the auxiliary data AD,; and AD; » are compared by a cross-
matching classifier in the Decision module. The cross-matching classifier computes a
cross-matching dissimilarity score s, on which to base its decision on whether the two
protected templates belong to the same subject (genuine) or not (imposter). The com-
parison between the protected templates of the same subject is referred to as a genuine
comparison and between different subjects as an imposter comparison.

Cross-matching Dissimilarity Scores

The cross-matching classifier used in the Decision module of Figure 6.14 extracts a score
from both auxiliary data AD ; and AD; » in order to base its decision on. In this work
we investigate the effectiveness of three different dissimilarity scores.

The most obvious score is to check whether the number of bits extracted from each
component (AD,[j]) is equal in both applications. The number of equal occurrences
would be asimilarity scoreand in order to obtain adissimilarity score s¢, (ADy,1,ADs 2)
we take the difference with its maximum equal to Ng, namely

Np

50, (AD1,1,ADy2) = Np — Z L0y (ADy,1[j] — AD1 2[4]), (6.8)
j=1

where 14y () isthe indicator function that returns a one when = € A, otherwise zero.
Note that (6.8) can be used for both the RCS and DROBA bit extraction schemes. How-
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ever, because the DROBA hit extraction scheme extracts more than a single bit and there-
fore AD, [j] could belarger than one, we will investigate the effectiveness of two alterna-
tive cross-matching scores.

The first alternative score checks whether bits, irrespective the exact number, are ex-
tracted from the same component in both applications and count the number of occur-
rences. Thiswould be a similarity score and in order to make it a dissimilarity score we
count the number of occurrenceswhere only one of the applications extracts bits, namely

Np
52, (AD11,AD1 2) = > |10} (AD1.1[4]) — L0y (AD1 2[4])]- (6.9)

Jj=1

The second alternative score looks at the difference between the number of bits that are
extracted from the same components. We use the p-norm defined as

Ng P

‘ . . p
5%, (AD11,AD1 5,p) = | > |AD11[j] — AD1 [j] ; (6.10)
j=1

where the norms of interest are the Manhattan norm with p = 1 and the Euclidean norm
withp = 2.

6.3.5 Experiments

In this section we will analyze the performance of the different bit extraction schemes
using a biometric database with a feature extraction algorithm. Furthermore, we aso
determine and analyze the cause of the cross-matching performance of the auxiliary data
of each bit extraction scheme.

Biometric M odality and Database

The database we use isthe MCY T (Ministerio de Cienciay Tecnologia) containing fin-
gerprint images from a capacitive and optical sensor as described in [128]. It contains 12
images of all 10 fingers from 330 subjects for each sensor. However, we limit our dataset
to only the images of the right-index finger from the optical sensor.

Feature Extraction Algorithms

In order to compensate for possible trandations between enrolled and verification mea-
surements, a translation-only pre-alignment step is performed during the feature extrac-
tion process. Such pre-alignment requires extraction of the core point which is performed
according to the algorithm described in [129]. Around the core point we definea 17 x 17
grid with eight pixels between each grid point. The following feature extraction algo-
rithms extract a feature value on each grid point. Our feature extraction algorithm failed
to extract a feature vector from one subject, so we excluded it from the dataset, hence
there are effectively only Ny = 329 subjects.
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Gabor Filter Response We use the Gabor filter response features extraction algorithm,
described in [107], where each grid point is filtered using a set of four 2D Gabor filters
at angles of {O, 5 37“ , respectively. The feature vector is the concatenation of the
modulus of the four complex responses at each grid point, resulting into a feature vector
dimension of Ny = 1156.

Dimension Reduction To decorrelate and reduce the number of feature componentswe
use the principle component analysis (PCA) and the linear discriminant analysis (LDA)
techniques, where the LDA transformation is also used to obtain more discriminating
feature components. The PCA and LDA transformation matrices are computed using the
training set. Npca isthe reduced dimension after applying the PCA transformation and
Nipa isthereduced dimension after applying the LDA transformation. We limit Ny pa
to the number of subjects within the training set from which the transformation matrices
are determined. Note that the final real-valued feature vectors are of length Ny = Ny pa.

Testing Protocol

The performance testing protocol consists of randomly selecting 219 out of Ny = 329
subjects as the training set and the remaining 110 subjects as the evaluation set, which
is referred to as the training-evaluation-set split. The bit extraction parameters such as
the quantization threshol ds, and the PCA and LDA transformation matrices are estimated
using the training set.

From the evaluation set we eval uate both the system and cross-matching classification
performance.

e For the system performance evaluation, N, samples of each subject are randomly
selected as the enrolment samples while the remaining samples are considered as
the verification samples. The protected templateis generated using all the N, enrol-
ment samples and compared with digjoint groups of N, verification samples where
the mean of the feature vectorsis taken prior to the bit extraction.

e For the cross-matching performance evaluation, we randomly select N, samples
for the enrolment for the first application and another random N, samples for the
second application as such that we have distinct samples for each application. For
each application we create the bit extraction auxiliary data AD; and compare all
AD; using the cross-matching classifier. Because of the limitation of 12 samples
of each subject we are are limited to N, < 6 for the cross-matching performance.

This split of creating the enrolment and verification set or the enrolment set for appli-
cation one and two is referred to as the enrolment-verification splits. If the verification
sampleisfrom the same subject as of the protected template, it is referred to as agenuine
comparison, otherwise it is an imposter comparison.

Both the training-evaluation-set and the enrolment-verification split are performed
five times. For each spilt we estimate the false match rate (FMR), the false non-match
rate (FNMR) and the equal-error rate (EER) where the FMR and the FNMR are equal.
Note that the splits are performed randomly, however the seed at the start of the protocol
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is alwaysthe same, hence all the splits are equal for the performancetests at different set-
tings. Therefore, the splitting process does not contribute to any performance differences.

Bit Extraction Schemes Perfor mance

Figure 6.15 depicts the performance in terms of the equal error rate (EER) at different
Nr = Nppa and Np settings with size enrolment and a single verification samples
{N. = 6, N, = 1} for the (8 the simple binarization scheme where it also holds that
N = Np, (b) the RCS scheme (RCS-T) where the average within-class variance across
the population is estimated from the training set, (c) the RCS scheme (RCS-E) where
the subject-specific within-class variance is estimated from the enrolment set, and sim-
ilarly for the (d)(e) DROBA schemes DROBA-E and DROBA-T, respectively. From
these results we observe that the optimal setting for the simple binarization scheme is
a Ng = Np = 200, while for both RCS and DROBA schemes their optimal setting
isaround Ny = 200, Ng = 100, see Table 6.3. The optimal setting for the RCS-E,
RCS-T and DROBA-T schemes are slightly different, namely { Ny = 220, Ng = 80},
{Nr = 220, Ng = 100}, and { Np = 200, Ny = 125}, respectively. Because of the
flatness of the EER curves we consider in the remainder of this work the same setting of
Nr = 200 and Ng = 100 for both the RCS and DROBA schemes.

With the optimal { Ny, Np} setting determined for { N, = 6, N, = 1}, theinfluence
of the number of enrolment samples N, on the EER for each bit extraction scheme is
illustrated in Figure 6.16. Note that for the N, = 1 case it is not possible to estimate
the within-class variance of the enrolment samples, hence there is no EER measurement
Figure 6.16 for the RCS-E and DROBA-E schemes. Increasing the number of enrolment
samples decreases the EER for each bit extraction scheme. Because of averaging the
N, rea-valued feature vectors prior to the bit extraction process, having more samples
further decreases the within-class variance. A smaller within-class variances leads to a
binary vector with smaller bit-error probabilities, hence obtaining a better performance.
The most significant decrease of the EER is obtained when changing N . from oneto two.
Further increasing N, still decreases EER and improvesthe performance, however itsim-
pact is of alesser extent and the EER curve becomes moreflat. The work in [33] showed
asimilar influence of N, on the EER for a biometric database of 3D faces. Additionally,
the results in Figure 6.16 also show that when N, > 3 the RCS-E and DROBA-E cases
have a smaller EER than their counterpart RCS-T and DROBA-T, respectively. Hence,

Table 6.3: Optimal settings of Ny = Nppa and N and the corresponding EER found
for the different bit extraction schemeswith N, = 6 and N, = 1.

Bit Extraction Schem Nr = Ni,pa|Ng|EER [%]

SimpBin 200 200 2.03
RCS-T 220 100 1.84
RCSE 200 80| 171

DROBA-T 200 125 1.64

DROBA-E 200 100| 144
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Figure 6.15: The EER at different Ny = Nppa and Np settings for the (a) simple bina-
rization scheme where Ny = Ny, (b)(d) the RCS and DROBA scheme with the average
within-class variance across the population estimated from the training set and referred
to as RCS-T and DROBA-T, respectively, (c)(e) the RCS and DROBA schemes with
the subject-specific within-class variance estimated from the enrolment set referred to as
RCS-E and DROBA-E, respectively. Note that we used six enrolment samples and a
single verification sample, { N, = 6, N, = 1}.

for N, > 3, the within-class variance estimation &VQV is more accurate when estimating it
from the enrolment samples than from the training set.

Cross-M atching Per formance

In Section 6.3.4 we discussed three different dissimilarity scores the cross-matching clas-
sifier could useto base its decision on. For the bit extraction schemes RCS-T and RCS-E,
the three proposed scores are all equal and it is not necessary to compare them. However,
for the DROBA-T and DROBA-E bit extraction schemes the cross-matching performance
based on the proposed scores for different N, values are depicted in Figure 6.17(a) and
Figure 6.17(b), respectively. For all proposed scores, the cross-matching performanceim-
proves when the number of enrolment samples N, increases. Thisimpliesthat the bit al-
location strategy becomes more stable across applications as more enrolment samples are
available. For both DROBA-T and DROBA-E cases, the dissimilarity score s¢, , which
indicates the number of occurrencesthat the number of extracted bitsis not equal, leadsto
the best cross-matching performance. Furthermore, the cross-matching performance for
the DROBA-T caseis better than for the DROBA-E case. In contrast to what we have ob-
served in Figure 6.16, having six enrolment samples available is not enough for the cross-
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Figure 6.16: System performance expressed by the EER for different number of enrol-
ment samples N, for the SimpBin, RCS-T, RCS-E, DROBA-T, DROBA-E hit extraction
schemes.

matching performancefor the DROBA-E case to outperform the DROBA-T case. Hence,
the bit allocation strategy at N, = 6 for the DROBA-E case is more subject-specific and
accurate enough to improve the system performance with respect to the DROBA-T case,
however not robust enough to have a better cross-matching performance.

For the RCS-T, RCS-E, DROBA-T, and DROBA-E bit extraction schemes, Fig-
ure 6.18 illustrates the cross-matching performance using the cross-matching score s ¢, |
from (6.8) as function of N.. From the results we can observe that the cross-matching
performance is best for the DROBA-T case followed by the RCS-T case, while both the
RCS-E and DROBA-E cases using the variance estimated from the N, enrolment sam-
ples have the worst cross-matching performance. The DROBA-E case still outperforms
the RCS-E case. We conjecture that because the DROBA hit extraction scheme in general
is more subject-specific than the RCS scheme due to its option to extract multiple bits,
therefore its cross-matching performance should be better.

Information L eakage

We have shown in Section 6.3.5 that subject-specific bit extraction auxiliary data AD
for both the RCS and DROBA schemes leaks information that can be used for cross-
matching. In case of the RCS scheme, the auxiliary data only reveals which components
are more reliable and does not reveal anything about the actual extracted bit value. As
shown in [133], for the DROBA scheme it does not always hold and depends on the im-
plementation of the DROBA allocation agorithm. Because we use the proposed remedy
in [133] of restricting the alocation algorithm, we can show with Figure 6.19 that the
information leakage is close to zero because the selected quantization intervalsin the en-
rolment phase are close to uniformly distributed. Only the quantization interval for the
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Figure 6.17: For different number of enrolment samples N, the cross-matching per-
formance of the auxiliary data for the (&) DROBA-T and (b) DROBA-E bit extraction
schemes using the proposed dissimilarity scores s¢, =~ of (6.8), sléM of (6.9), and s¢,, of
(6.10) withp =1 andp = 2.

caseswherethreebits are extracted b are not close to uniform, but because only 1% of the
extracted bits are derived from a b} caseitsimpact on theinformation leskageis minimal.
As discussed in [133], increasing the feature quality restriction threshold of extracting
three bits i, 3 will make the distribution of the quantization intervals more uniform,
however it will further decrease the frequency of the b} cases. We can also conclude that
for this biometric data the maximum number of bits that should be extracted is two.
Thus, the information that is being leaked is not of the enrolled binary vector £ § and
therefore it has to leak information of the enrolled real-valued feature vector f©. For
the RCS scheme, the Ny most reliable components are selected based on the z-score
z = 12291 \where § is the binarization threshold, /i is the estimated mean, and &, is the
estimated standard deviation. Because the N component with the largest z-score are
selected, we know that if a component belongs to the Nz most reliable components, its
mean will most likely be at least at a certain distance from the binarization threshold §
in order to have a large enough z-score. A visualization of the information leakage is
shown in Figure 6.20(a). For a given scenario the shaded area indicates where we know
with a high probability that the real-valued feature value of the selected componentsis
most likely distant from the binarization threshold. The distance would depend on the es-
timated standard deviation and on the smallest z-score selected as a reliable component.
At an equal z-score, the distance between the mean and threshold | — §] is smaller when
the standard deviationis smaller and vice versa. If the smallest selected z-score increases,
the distance would aso increase. The smallest z-score obtained from the N selected
components would depend on the ratio between the number of selected components and
the feature vector length {2. Decreasing the ratio £, i.e. selecting a smaller fraction
of the most reliable components, increases the smallest z-score that has been selected.
The exact distance would be difficult to estimate due its dependency of many parameters,
thereforeit is out of the scope of thiswork. We can only illustrate the type of information
leakage but not its quantity. For the components that were not selected we know the op-
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Figure 6.18: The cross-matching performance (EER) as function of the number of en-
rolment samples N, for the RCS-T, RCS-E, DROBA-T, and DROBA-E hit extraction
schemes using the cross-matching distance score s, from (6.8).

posite information, namely that their real-valued feature valueis close to the binarization
threshold.

Similarly, this information leakage also holds for the DROBA scheme. Because of
the freedom of allocating the number of bits to be extracted, we know that the real-valued
feature value of the components are at least at a certain distance from the quantization
threshold. When multiple bits are extracted, Figure 6.20(b) and Figure 6.20(c) visualize
the information leakage for the cases where two bits b3 and three bits b3 are extracted,
respectively. The real-valued feature will be most likely in the shaded areas. It is out of
the scope of this work to derive the exact boundaries of the shaded areas.

System vs Cross-M atching Performance

The comparisons between the system and the cross-matching performance (indicated with
the suffix ‘CM’) are shown in Figure 6.21. Figure 6.21(a) and (b) illustrate the achieved
EER for different number of enrolment samples NV, for the RCS and DROBA schemes,
respectively. For both schemes, the system performanceis better than the cross-matching
performance at small N, values, but the difference decreases when N, increases. If N,
is large enough, the cross-matching performance can even be better than the system per-
formance. For the RCS-T and DROBA-T schemes, where the variance is estimated from
the training set, the cross-over point occurs at asmaller N, valuethan for the RCS-E and
DROBA-E schemes, where the variance is estimated from the enrolment samples. Es-
timating the variance from the limited enrolment set introduces more uncertainty in the
bit allocation strategy and reduces the cross-matching performance. When comparing the
ROC curves between the system and cross-matching performancewith N, = 6, see Fig-
ure 6.21(c) and (d) for the RCS and DROBA schemes respectively, the cross-matching



6.3. Analysisof the System and Cross-Matching Perfor mance of Bit Extraction
Schemes with Template Protection 179

1Quanti zation Interval”
(a) DROBA-T, b7 case (b) DROBA-E, b} case

1Quanti zation Interval”

6000 6000

5000 5000
5“4000 5“4000
) 5]
=} =}
§_3000 §_3000
L L
2000 2000

1000 1000

Quaﬁti zation Inferval
(d) DROBA-E, b3 case

Quaﬁti zation Inferval
(c) DROBA-T, b} case

250,

250,

ijantiz“alionsl nterval : ijantiz“ationﬁ nterval
(e) DROBA-T, b; case (f) DROBA-E, b3 case

Figure 6.19: The frequency of the selected quantization intervals for the case when 1 bit
(b), two bits (b3) , and three bits (b3) are alocated.

performance is consistently better than the system performance except for the RCS-E
scheme for small FMR values. The main reason why the cross-matching performance
outperforms the system performance for the case of N, = 6 with N, = 1, is because of
the imbalance of the system in terms of the number of enrolment and verification sam-
ples. Note that the cross-matching classifier compares the auxiliary data created in the
enrolment phase where N, = 6 samples are used in both application, while the system
performance compares the binary vector from the enrolment phase based on N, = 6 sam-
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Figure 6.20: The information leakage of the real-valued feature vectors with respect to
the adjusted-total density p; adjusted for the averaging of N. enrollment samples. For
each of the three bit extraction cases, we know with a high probability that the real-valued
feature vector will be in the shaded area, and thus not close to the binarization threshold.

ples with the binary vector from the verification phase based on NV, = 1 samples. Hence,
because of the unbalanced scenario where N, > N, the cross-matching performance can
be better than the system performance.

6.3.6 Reconstruction of AD; in the Verification Phase

In the previous section we have experimentally shown that the cross-matching perfor-
mance of the auxiliary data from the bit extraction scheme can be in the same order of
magnitude of the system performance or even better. In this section, we consider not
to store the subject-specific bit allocation strategy AD; from the enrolment phase, but
instead we investigate whether the same allocation strategy can be reconstructed in the
verification phase in order to resolve the issue of cross-matching based on AD ;.
Consider the scheme depicted in Figure 6.22. The auxiliary data AD; from the Bit
Extraction Generator module in the enrolment phase is discarded and thus not stored as
part of the protected template. In the verification phase however, the auxiliary data AD §
is reconstructed and used to extract the binary vector in the verification phase f§. The
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Figure 6.21: The comparison between the system performance and the cross-matching
performance of the RCS and DROBA schemes where cross-matching performanceisin-
dicated by the suffix ‘CM’. Sub-figures (a) and (b) depicts the EER as function of the
number of enrolment samples N, with a single verification sample N, = 1 for the RCS
and DROBA schemes, respectively. Sub-figures (c) and (d) illustrates the corresponding
ROC curvesfor the casewhere N, = 6 and N, = 1.

number of bit errors between the binary vectors from the enrolment f | and verification £}
will now also depend on the accuracy of the reconstructed auxiliary data AD 7.

The system performance expressed by the EER as function of the number of enrol-
ment and verification samples N. = N, of the proposed bit extraction scheme from
Figure 6.22 isillustrated in Figure 6.23 for both the RCS and DROBA schemes and de-
noted with the suffix ‘Rec’. As reference we also include the performance of the original
bit extraction scheme from Figure 6.12. From these results we can conclude that the re-
constructed auxiliary data in the verification phase is not sufficiently similar to the one
from the enrolment phase, because its performance is two orders of magnitude worse
when compared with the original scheme. Note that due to the significant performance
improvement for the N, = N, > 4 cases the dataset has to be considered to be too small
to accurately measure the EER.

To have an impression on the accuracy of the reconstructed auxiliary data AD |, we
show in Figure 6.24 the averageratio between thescore s ¢, | from (6.8) and N acrossthe
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Figure 6.22: Adjusted bit extraction scheme where the auxiliary data AD ; in the enrol-
ment phaseis destroyed and not stored as the protected template. |1n the verification phase,
the auxiliary datais reconstructed as AD 7 using the verification samples instead.

evaluation set population as functi on of the number of enrolment and verification samples

with N, = N,. Theratio JgM indicates the fraction of the bit allocation strategy that
is different between enrolment AD, ; and verification AD7 ;. Note that for these cases
at least 16% of the bit allocation strategy is different. ThIS |mpI|0£ that on average half
of those differences will lead to a bit error between the binary vector in the enrolment
f5; and verification £ phase, assuming that the bits are uniformly distributed across the
population. At smaller numbers of enrolment and verification samples, the difference
ratio increases towards 30%-40% thus leading to at least 15%-20% relative bit errors
between £ and f3. Furthermore, estimating the within-class variance from the enrolment
samples or the DROBA scheme in general consistently has a larger differenceratio. The
large difference ratio clearly explains the significant performance difference between the
original system and the proposed system reconstructing the auxiliary data.

Hence, we can conclude that using this method of reconstructing the bit allocation
strategy in the verification phase cannot be used to prevent cross-matching, because its
system performance is unacceptable. Unless a better reconstruction method is devel oped,
it isnecessary to store the auxiliary data from the enrolment phase for use in the verifica-
tion phase in order to maintain a good system performance. Consequently, the auxiliary
data could be used for cross-matching when stored in clear (unencrypted).

6.3.7 Increasing the Difference between Cross-matching and System
Perfor mance

In the previous sections we have compared the system and the cross-matching perfor-
mance for different bit extraction schemes. If the number of enrolment samplesis large
enough, i.e. N, > 4 for these experiments, the cross-matching performanceis better than
the system performance. Furthermore, we have shown that in order to harvest the sys-
tem performance gain from the RCS and DROBA schemes, it is necessary to store the
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Figure 6.23: The performancein terms of the EER of the bit extraction scheme proposed
in Figure 6.22 denoted with the suffix ‘Rec’ and the original bit extraction scheme from
Figure 6.12. Note that due to the significant performance improvement of the original
scheme for the N, = N, > 4 cases the dataset may tend to be too small to accurately
measure the EER.

auxiliary data for later use in the verification phase. Hence, there is the trade-off be-
tween improving the system performance and having a cross-matching performance. In
this section we investigate several methods to increase the difference between the system
and cross-matching performance. First, we investigate the scenario of having a reversed
unbalanced system where the number of verification samples NV, is larger than the num-
ber of enrolment samples N, and a balanced system where N, = N,. Furthermore, we
investigate the possibility of fusion the system and cross-matching performance.

Rever sed Unbalanced and Balanced System

As discussed in Section 6.3.5, the main reason why the cross-matching performance can
outperform the system performance because of the unbalanced scenariowhere N, > N.,.
By reversing the scenario such that N, > N, referred to as the reversed unbalanced
system, the system performance is always better than the cross-matching performance
as depicted for the N, = 1 with N, >= 1 casesin Figure 6.25(a) and Figure 6.25(b)
for the RCS-T and DROBA-T schemes, respectively. Note that because N, = 1 we
cannot investigate the RCS-E or DROBA-E schemes. Because the bit extraction auxiliary
data is derived from a single enrolment sample only, its bit allocation strategy is not as
stable across applications as is observed for the N, = 6 case. Consequently the cross-
matching performance deteriorates. Note that the system performance mostly remains
unaffected when swapping N, and N, as can be observed by comparing Figure 6.21(a)
and Figure 6.21(b) with Figure 6.25(a) and Figure 6.25(b), respectively.

Furthermore, by considering a balanced system where N, = N,, the system perfor-
mance is a so better than the cross-matching performance asillustrated by Figure 6.25(c)
and Figure 6.25(d) for the RCS and DROBA schemes, respectively. Note that the cross-
matching performance is equal to the ones shown in Figure 6.21(a) and Figure 6.21(b),
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but the system performance has significantly increased due the increase of the number
of verification samples equal to the number of enrolment samples. The system perfor-
manceincreaseis so great that the current dataset may tend to be too small for an accurate
performance estimation.

Fusion System and Cross-M atching Per formance

Another potential method to increase the diff erence between the system and cross-matching
performanceisto exploit the cross-matching performance by fusion with the system per-
formance. This method is portrayed in Figure 6.26. In the verification phase, besides
extracting the verification binary vector £ the auxiliary data AD; is also reconstructed
from the verification samplesas AD7. In contrast to Figure 6.12, the Bit Protection Com-
parator modul e outputs the system dissimilarity score s..,, considered to be the Hamming
distance between f§ and £, du (£5, £). Thework of [140] describesthe possibility of ex-
tracting a score when using the fuzzy commitment scheme as the bit protection scheme,
which is generally known to output only a decision. Furthermore, the Cross-Matching
Classifier module determines the cross-matching dissimilarity score s, given AD; and
AD] with use of (6.8). The Fusion module bases its decision on the dissimilarity scores
TP and SCM

This concept of fusion of the system and cross-matching scores is similar to the one
presented in the work [141]. In [141] they proposed to combine the fragile bit distance
(FBD) with the Hamming distance, both derived from the enrolment and verification iris
code. By applying fusion with either the Weighted-Sum-rule or Product-rule, they man-
aged to obtain asignificant improvement of the EER from 9.4 x 10 ~2t08.55x 103, They
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Figure 6.25: The system and cross-matching performance expressed by the EER for the
(@) RCS and (b) DROBA schemes as function of N, with N, = 1 referred to as the
reversed unbalanced case, and as function of N. = N, referred to as the balanced case
for the (c) RCS and (d) DROBA schemes.

considered the 25% most inconsistent bits as the fragile bits and the FBD is the fraction of
the non-overlapping fragile bits from both the enrolment and verification iris code. Frag-
ile bits within iris codes have been investigated in the works of [142], [143], and [144]
in which they al agree that due to the coarse bit extraction schemes some bits are less
consistent and can thus be labeled as fragile. They proposed methods to determine the
most fragile bits and observed that excluding the fragile bits led to a better performance.
These recent developments on iris codes are very similar to the concept of the RCS hit
extraction scheme discussed in this work, which has frequently been used in context of
template protection in the work of for example [35], [34], and [33].

We use the Weighted-Sum-rule as the score-level fusion method to derive the fused
score s ¢

_ Stp oy Som ;
sp= AR+ (1= )2 withd € [0,1) (6.11)

where we normalized the system score s..,, with respect to the length of the binary vector
Np and the cross-matching score s, with respect to the length of the real-valued fea-
ture vector Nr. The scatter plot of the normalized s..,, and s.,, scores are depicted in
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Figure 6.26: Scheme for fusion of the system and cross-matching performance.

Figure 6.27 for the RCS-T scheme for different N, = N, settings. Note that we omitted
the caseswith N, = N, = 5 and N, = N, = 6 because as observed in Figure 6.23
the performance improvement is so significant making the evaluation dataset to be too
small. The scores for imposter comparisons are indicated by red crosses ‘+’, while we
use blue discs ‘0’ for genuine comparisons. Note that the cluster of imposter scores is
stable with respect to the number of enrolment and verification samples, while the gen-
uine scores shift to the lower-left corner when the number of samples is increases. The
scatter plots also clearly indicate that the system scores s .., are more discriminating then
the cross-matching scores s.,,. Figure 6.28 depicts the EER obtained with fusion using
the Weighted-Sum-rule from (6.11) as function of the weight A for both the RCS and
DROBA schemes and for different cases of equal number of enrolment and verification
samples,i.e. N, = N,. Notethatif A = 1 the EER of the system performanceis obtained,
while the cross-matching performance is obtained when A = 0. In all cases thereis no
significant improvement in performance. When changing A from one to zero, the EER
mainly remains equal or increases.

We can thus conclude that in contrast to the findingsin [141], fusion of the system and
cross-matching performance using the Weighted-Sum-rule does not lead to a significant
performance improvement in our experimental setup.

6.3.8 Discussion and Conclusions

Extracting a binary vector from the biometric sample is an essential element for many
template protection schemes. We compared several bit extraction schemesvaryingintheir
use of subject-specific information, namely (i) the simple bit extraction scheme SimpBin
where no subject-specificinformationis used, (ii) the reliable component selection (RCS)
scheme that uses subject-specific statistics to select the most reliable components, and
(iii) the detection rate optimized bit allocation (DROBA) scheme where multiple bits
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can be alocated based on subject-specific statistics. Because of its option to allocate
multiple bits, the DROBA scheme can be considered to be more subject-specific than the
RCS scheme. The degree of using subject-specific statistics is increased by estimating
the variance from the enrolment samples instead of using the average variance from the
training set. The auxiliary datacontaining the bit allocation strategy is stored as part of the
protected template. Storing the auxiliary data as part of the protected template can lead
to cross-matching between protected templates from the same subject within different
applications. We also investigate the cross-matching performance for each bit extraction
scheme.

From the experimental results, we have shown that the system performance improves
when the bit extraction scheme is more subj ect-specific, because the DROBA scheme ob-
tained the best system performance. We have also illustrated that the best cross-matching
performance is aso achieved with the DROBA scheme. Furthermore, we have demon-
strated that estimating the variance from the enrolment samples instead from the training
set leads to an improvement of the system performance only if the number of enrolment
samples is larger than three. In contrast, the cross-matching performance deteriorates
when the variance is estimated from the enrolment samples, because the bit allocation
strategy is less stable due to spread of the variance estimation. For both the RCS and
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DROBA schemes, increasing the number of enrolment samples greater than three with
a single verification sample may cause the cross-matching performance to outperform
the system performance. Hence, caution has to be taken when increasing the number of
enrolment samples.

We investigated an alternative bit-extraction scheme without any cross-matching, be-
cause the bit allocation strategy is not stored but reconstructed from the verification sam-
ples. We have shown that its system performance is significantly worse because at least
16% of the bit allocation strategy is different leading to at least 8% of bit errors. These
results indicate that the bit allocation strategy has to be stored as the auxiliary data part
of the protected template in order to increase the system performance through subject-
specific bit allocation.

From the experimental results we have seen that the difference between the system
cross-matching performance can be made increased by using (i) a reversed unbalanced
system where the number of verification samplesis larger than the number of enrolment
samples or (ii) a balanced system where the number of enrolment and verification sam-
ples are equal. Furthermore, inspired by the results from the literature, we attempted to
increase the difference between the system and cross-matching performance by combin-
ing both with score-level fusion using the Weighted-Sum-rule. However, our performance
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at fusion was not significantly better than the system performance.

In conclusion, when designing a template protection system with a bit extraction
scheme, the benefits of the system performance gain by using a more subject-specific bit
extraction scheme has to be weighted against the drawbacks corresponding to the obtained
or increased cross-matching performance. If the risks related to cross-matching are too
high it may be advised to use a bit extraction method without or with | ess subject-specific
information but with a system performance loss as its consequence. We would advice
not to use more than four enrolment samples when there is a single verification sam-
ple, because the cross-matching performance may outperform the system performance.
Furthermore, the difference between the system and cross-matching performance can be
increased by using areversed unbalanced or balanced system approach. The drawback of
the reversed unbalanced or balanced system approach is the time-expensive and inconve-
nience of acquiring multiple samplesin the verification phase.

To further mitigate the privacy risks of cross-matching even when template protection
isused, the 1SO guidelines [25] recommend (i) the practice of data separation where the
most privacy sensitive information such as auxiliary data AD; is stored on an individual
smartcard or token, and (ii) the use of classical encryption techniques such as DES and
AES to augment the confidentiality of the reference template.
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6.4 Chapter Conclusions

Firstly, in Section 6.2, we have shown that great care has to be taken when designing the
DROBA hit extraction scheme in order to guarantee that its auxiliary data does not leak
information about the binary representation of the biometric sample. When not properly
designed, the information leakage can be significant and an adversary is able to exploit
this information and increase its success rate of impersonation by two orders of mag-
nitude. As a solution to reduce this information leakage, we propose a redesign of the
DROBA agorithm. Specifically, we propose a remedy which in fact is a guideline on
how to restrict the alocation freedom of the DROBA algorithm. Experimental results
showed that the proposed remedy significantly reduces the information leakage without
influencing the system performance.

Secondly, in Section 6.3, we investigated the relationship between the improvement
of the HDS classification performance by using bit extraction schemes with more subject-
specific information and the corresponding cross-matching performance based on the bit
extraction auxiliary data AD; . If more subject-specific information is used within the bit
extraction scheme the HDS performance improves, however the cross-matching perfor-
mance also improves. Furthermore, we showed that the cross-matching performance can
be better than the HDS performance in case of an unbalanced system, which has more
enrolment samples than verification samples. On the other hand, we have also shown that
the HDS performance saturates with increasing number of enrolment samplesif the num-
ber of verification samplesisfixed. Therefore, we would advice not to use more than four
enrolment samples when there is a single verification sample, because the cross-matching
performance could become better than the HDS performance. The cross-matching perfor-
mance can be degraded with respect to the HDS performance by using a balanced system
with equal number of verification as enrolment samples, or areversed unbalanced system
where there are more verification than enrolment samples.

In general, dueto theinformation |eakage we have identified, it is advisableto protect
the auxiliary data AD; part by data separation principles (stored on a token) or by using
encryption techniques.



Chapter

Multi-Sample and Multi-Algorithm
Fusion

7.1 Chapter Introduction

In this chapter the fourth and last research question will be addressed, namely

Given the HDS template protection scheme: How can one realize fusion
with protected templatesand towhat extend can it improvethe classification
performance?

Not being able to apply fusion at score-level with the HDS system has been frequently
emphasized as its limitation, see Maiorana et a. (2010) [47]. However, we show in
this chapter that with some modification of the verification phase of the HDS it is possi-
ble to apply fusion at score-level, however, there are some limitations on the match and
non-match regions that can be created in the score space. Furthermore, we compare the
fusion classification performance at score-level with the one obtained at feature-level and
decision-level fusion. We applied this comparison in context of multi-sample and multi-
algorithm fusion, which are published in Kelkboom et al (2009) [125] * and Kelkboom et
al (2009) [140]?, respectively. Despite the aforementioned limitations of fusion at score-
level, fusion at score-level outperforms fusion at feature- and decision-level in case of
multi-algorithm fusion, while no significant performance differences were found on the
three fusion levelsin case of multi-sample fusion.

1E. J. C. Kelkboom, X. Zhou, J. Breebaart, R. N. J. Veldhuis, and C. Busch, “Multi-sample fusion with
template protection,” in Proc. of BIOSIG 2009: Biometrics and Electronic Signatures, Darmstadt, Germany,
2009, pp. 55 - 67.

2E. J. C. Kelkboom, X. Zhou, J. Breebaart, R. N. J. Veldhuis, and C. Busch, “Multi-algorithm fusion with
template protection,” in IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems
(BTAS 09), Washington DC, U.S.A., September 2009, pp. 1-8.
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7.2 Multi-Sample Fusion with Template Protection

7.2.1 Abstract

The widespread use of biometrics and its increased popularity introduces privacy risks.
In order to mitigate these risks, solutions such as the helper-data system, fuzzy vault,
fuzzy extractors, and cancelable biometrics were introduced, also known as the field of
template protection. Besides these devel opments, fusion of multiple sources of biometric
information have shown to improve the verification performance of the biometric system.
Our work consists of analyzing multi-sample fusion in the context of the template protec-
tion framework using the helper-data system. We verify the results using the FRGC v2
database and two feature extraction algorithms.

7.2.2 Introduction

More applications are using biometrics ranging from simple home or business applica-
tions with a small and limited group of enrolled people (for example access control to
buildings or rooms) to large-scale systems used by an entire nation or even the entire
world (for example identity cards with biometrics or the electronic passport ePassport).
Unfortunately, its widespread use increases the related privacy risks such asidentity fraud
or activity monitoring by cross-matching between biometric databases of different ap-
plications. However, the field of template protection provides the technology that en-
ables the mitigation of these privacy risks by transforming the biometric template with
a one-way operation in order to guarantee the irreversibility property and by random-
izing the biometric template that guarantees that multiple protected templates from the
same biometric sample cannot be linked to each other. In the literature, different types of
technol ogies have been presented, for example the Helper-Data Systems (HDS) [33-35],
Fuzzy Vaults [ 76, 84], Fuzzy Extractors [64, 65], and Cancelable Biometrics [59].

Besides the templ ate protection devel opments, fusion of multiple sources of biometric
information has shown to improve the verification performance of the biometric system.
As described in [18], the basic principle of fusion is the reconciliation of evidence pre-
sented by multiple sources of biometric information in order to enhance the classification
performance. Furthermore, different sources of biometric information can be extracted
from the same biometric modality by: (i) capturing a sample of multiple instances (left
and right index fingerprint or iris) with the same sensor, (ii) using different types of sen-
sorsto acquire a different biometric sample from the same instance, (iii) capturing severa
samples using the same sensor and instance, and (iv) extracting dissimilar feature repre-
sentations of the same biometric sample using different algorithms. These cases are re-
ferred to as the multi-instance, multi-sensor, multi-sample, and multi-algorithm systems,
respectively. Furthermore, the fifth type is the multi-modal system, which is the fusion of
sources of biometric information from multiple modalities, for example fingerprint, face,
iris, voice, palm or retina. To complete the summary from [18], the sixth typeis referred
to as the hybrid system, which consists of a combination of the aforementioned fusion
types. The most common implementations of multi-biometric systems address fusion at
the feature-level, score-level or decision-level.
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Figure 7.1: The HDS template protection scheme.

In the work of [46], the Fuzzy Vault template protection system is used for applying
multi-sample, multi-instance, and multi-modal fusion. In case of multi-sample fusion,
they create a single mosaiced template from multiple fingerprint impressions from which
they construct the vault. For multi-instance fusion they take the union of the minutiae
sets of the left and right index fingers for constructing the vault. For multi-modal fusion,
afingerprint and an iris sample are combined by concatenating the unordered minutiae
set with the transformed iriscode extracted from the fingerprint and iris samples, respec-
tively. The vault is constructed using the concatenated unordered set. The verification
performance has improved for all three cases as well as the claimed security.

Furthermore, the works of [33, 34, 48] based on the HDS template protection system
inherently apply multi-sample fusion at feature-level by averaging the multiple enrolment
samples. However, no arguments are provided for applying feature-level fusion instead
of either score-level or decision-level.

Our work also consists of applying multi-sample fusion using the HDS, but we an-
alyze the performance improvements of fusion at feature-, score-, and decision-level fu-
sion. We use 3D face range images of the FRGC v2 dataset [99] and verify the perfor-
mance improvement on two recognition algorithms.

Theoutline of this paper isasfollows. In Section 7.2.3we briefly discussthe HDS sys-
tem, while in Section 7.2.4 we discuss the application of multi-sample fusion at feature-,
score-, and decision-level using the HDS system together with the experimental setup and
results. We finish with the conclusionsin Section 7.2.5.

7.2.3 Template Protection Scheme

In the literature, many presented template protection schemes are based on the capability
of generating a robust binary vector or key from biometric measurements of the same
subject. This also holds for the HDS system we consider and is depicted in Figure 7.1.
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For the sake of coherence we use the terminology auxiliary data (AD) and pseudonymous
identifier (PI) proposed in [102], which is in line with standardization activities in 1SO
[25]. Within the Bit Extraction module, a binary vector fg € {0, 1}*V® is extracted from
the real-valued representation of the biometric sample, f € RV*. We use a single bit
guantization scheme based on thresholding and the reliable component selection (RCS)
algorithm. We select the Ny most reliable components based on the estimated z-score
of each component. With use of the multiple (V,) enrolment samples, the z-score is
estimated as the ratio between the distance of the estimated mean with respect to the
guantization threshold and the estimated standard deviation, see [33] for a more detailed
description of the z-score estimation and the quantization scheme. The index information
of the selected reliable componentsis stored as auxiliary data AD; .

The binary vector {5 could be used as a key for any encryption purposes, however it
is not considered as being practical because of the high probability that it is not exactly
the same in both the enrolment and verification phase (f5 # ), due to measurement
noise and biometric variability that lead to bit errors. The number of bit errorsis also
referred to as the Hamming distance du (£, f). To deal with the bit errors, we use
error-correcting codes (ECC). The combination of the ECC with a cryptographic hash
function forms the scheme also known as the Fuzzy Commitment scheme [36]. In the
enrolment phase, a binary secret or message vector K € {0, 1} *< is randomly generated
by the Random-Number-Generator (RNG) module. A codeword C of an error-correcting
code is obtained by encoding K in the ECC-Encoder module. As the ECC we use the
linear block type code “Bose, Ray-Chaudhuri, Hocquenghem” (BCH) [145], which is
specified by the codeword length (n.), secret length (k.), and the corresponding number
of bits that can be corrected (t.), in short [n., ke, t.]. Some practical BCH settings are
provided in Table 7.1, where the bit error rate (BER) is the ratio ¢ ./n.. The codeword
is XOR-ed with {5 in order to obtain auxiliary data AD,. Hence, 5 should have the
same dimension as C, implying Ny = n.. Furthermore, the hash of K is taken in order
to obtain the pseudonymous identifier Pl. Under the assumption that the bits of f are
independent, from [146] we can use the secret size k. as a measurement of the difficulty
of guessing the enrollment binary vector f§ from the protected template {AD;, AD,, Pl },
hence safeguarding the privacy. The larger the secret size the more difficult it isto either
guess f§ or K from PI.

Table 7.1: Some examples of the BCH code given by the codeword (n ) and secret (k)
length, the corresponding number of correctable bits (¢ .), and the bit error rate (BER)
te/ne.

Ne | ke | te | BER = t./nc

8 31 24.4%
127 15| 27 21.3%
9 63 24.7%
255 21 | 55 21.6%
10 | 127 24.9%
51t 31 | 109 21.3%
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In the verification phase, a new biometric sample is taken and transformed into its
binary representation within the Bit Extraction module with help of auxiliary data AD ;.
The new word C* is computed by XOR-ing £ with AD,, and for a genuine case it is
expected that C* is closeto C. The candidate secret K* is obtained by decoding C* in
the ECC-Decoder module. Subsequently, the candidate pseudo identity Pl * is computed
by hashing K*. The decision in the Bit-Comparator module is based on whether Pl and
PI* are bitwise identical.

The Bit-Comparator module outputs a match as its decision d only if Pl and PI *
are identical, which occurs when the number of bit errors between the binary vectors f §
and £ is smaller or equal to the error-correcting capability ¢ . of the ECC. Thus, there
is a match when the Hamming distance is smaller than ¢, du(f5, f3) = |/f§ @ f5[|, <
t.. Therefore, the fuzzy commitment scheme can be considered as a Hamming distance
classifier with threshold ¢.. Note, that the maximum number of bits that the BCH can
correct ¢! iscloseto 25% of the codeword length. In the remainder of the text, weindicate
this limitation as the ECC-limitation.

As adistance score s we use the number of bits that had to be corrected by the ECC
decoder. The candidate secret K* is encoded to its corresponding codeword C and is
XOR-ed with C* in order to obtain the error pattern e. The error pattern is equal to the
bit differences between the enrolment and verification binary feature vectors (f 5 ¢ ) as
follows

e =CapC*
=Co & (f5 © AD2)
C (fB (fg & C)) (7.1)
—(CoC) e (f o)
(£ @ fV it C = C,

where C isequal to C when thereisamatch, i.e. K and K * are equal. The distance score
s is thus the sum of the error pattern, hence equal to d (fg, £f3}) and only a valid score
when there is amatch, i.e. du(f§, f§) < t.. If the scoreis not valid we only know that
du(fs, £3) > t..

7.2.4 Experiments

In this section we present the methods for multi-sample fusion at feature-, score-, and
decision-level and empirically validate the best performance achieved at each level by
means of a biometric database and two feature extraction algorithms.

Experiment Setup

Biometric Databases All the results in this work are obtained using the FRGC v2
dataset [99] containing atotal of 4007 3D shape samples from 465 subjects.

However, one of the two 3D shape recognizerswe used could not successfully extract
afeature vector out of each sample, hence reducing the dataset to 3507 samples from 454
subjects. As the template protection algorithm works best at multiple enrolment samples,
the subset of subjects with at least 6 (5 as enrolment samples with at least one for the
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verification) samples or more is created. This resulted into a subset of 261 subjects with
in total 2970 samples.

Feature Extraction Algorithms Thefirst algorithm is the shape-based 3D face recog-
nizer from [106] and is referred to as Algol. It has two main steps: 1) the alignment
of faces, and 2) the extraction of surface features from 3D facia data. In the alignment
step, each face is registered to a generic face model (GFM) and the central facial region
is cropped. The GFM is computed by averaging correctly aligned images from atraining
set. After the alignment step, we can assume that all faces are transformed in such away
that they best fit the GFM, and have the same position in the common coordinate system.

After alignment, the facial surface is divided into 174 local regions. For each region,
the maximum and minimum principal curvature direction are computed. Each of the two
directions is presented by the azimuthal and the polar angle in the spherical coordinate
system. Combining all theregionsleadsto afeaturevector dimension Ny = 174x2x2 =
696.

The second algorithm, Algo2, is a histogram-based feature extraction method. After
the pre-registration of the face data, afrontal view of the face model is obtained, wherethe
tip of the noseis at the origin in the Cartesian coordinate system. The distribution of depth
values of the normalized face model describes the characteristics of an individua facial
surface. In order to obtain more detailed information about the local geometry, the 3D
model is divided into several sub areas which are orthogonal to the symmetry plane of the
face. The features are extracted from the depth value distribution in each sub-area. The
feature vector dimension is Ny = 476. A full description of this algorithm is provided
in[147].

For both feature extraction algorithms, the raw feature vectors they produce are used
asinput of the template protection system as described in Section 7.2.3. Hence, no further
signal processing is performed.

Testing Protocols The performance testing protocol consists of randomly selecting
50% (130) subjects as the training set and the other subjects as the test set, thisis re-
ferred to as the training-test-set split. The template protection system parameters such
as the quantization thresholds, used within the Bit Extraction module, are estimated on
this training set. Hereafter, the test set is randomly split into an equally sized fusion-
training and evaluation set containing around 65 subjects each. All the training needed
for fusion is thus performed on the fusion-training set and the reported performance is
obtained from the evaluation set. From the evaluation set, 5 samples of each subject are
randomly selected as the enrolment samples while the remaining samples are considered
as the verification samples. This split is referred to as the enrolment-verification split.
The protected template is generated using all the enrolment samples and compared with
each verification sample.

The training-test-set split is performed five times, while for each split the enrolment-
verification split is performed five times. From each enrollment-verification split we mea-
surethe G, (the false non-match rate (FNMR, ) at the targeted false match rate (FMR,
a) of at,, = 0.25%) and the equal-error rate (EER), whichisthe error rate achieved at the
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Figure 7.2 ROC curves at feature-level fusion for different n. settings for the (a)
Algol and (b) Algo2 algorithm.

operating point where both FNMR and FMR are equal. With use of the 25 measurements
we estimate the 95% confidence interval (ci) defined as ¢i = 1.960 prr/ \f(25) for the
EER case whileusing o, for the S;,, Case, respectively. Note, that the splits are per-
formed randomly, however the seed at the start of the protocol is always the same, hence
all the splits are equal for the performance tests at feature-, score-, and decision-level

fusion. Hence, the splitting process does not contribute to any performance differences.

Experiment Results

Feature-level Fusion Similar to the works [33, 34, 48], we average the N, = 5 enrol-
ment samples before entering the template protection scheme. By averaging the samples
the measurement noise and the biometric variability are suppressed. Hence there will be
less bit-errors and the binary representation will be more robust.

The achieved performancesfor different n . settings are portrayed by the ROC curves
in Figure 7.2(a) and (b) for algorithms Algol and Algo2, respectively. Furthermore, the
EER and 3., details are givenin Table 7.2. The table provides the ¢i for both EER and
Biar @nd their operating point provided as the relative Hamming distance (RHD). The
right column of the table providesthe effective secret size |K | of the template protection
system at the specific fusion level. Because a single protected template is created at
feature-level fusion, |K ¢| is equal to k. of the ECC. On the other hand, k. is determined
by the t. setting that leads to a « close to the target «.,, but smaller. Thisis exactly
the ECC setting with a BER just larger than the operating point in RHD corresponding
to Biar. Entriesin the table indicated with quotes cannot be reached in practice because
of the ECC-limitation, however we are able to estimate them because of the Hamming
distance classifier assumption as discussed in Section 7.2.3. Entries with “x” can neither
be reached nor estimated.

Note that the ROC curves are limited because of the ECC-limitation. In order to
reach larger o and smaller 8 valuesiit is required to tolerate and thus correct more bit
errors. However, the error correcting capability of an ECC is limited. From the results
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we can conclude that both algorithms perform optimally at a codeword size of n . = 255.
These settings are used in the score- and decision-level fusion analysis. Compared to the
Algo2 agorithm, Algol has a better performance but a smaller secret size (see Table 7.2,
right column).

Score-Level Fusion A general implementation of the template protection system at
score- or decision-level fusion is depicted in Figure 7.3. A protected template is cre-
ated for each of the N, enrolment samples. Note that the RCS quantization scheme
as discussed in Section 7.2.3 uses multiple enrolment samples in order to estimate the
necessary statistics, hence we use al the N, enrolment samples to determine the N
most reliable components and is used as such in each N, template protection systems
portrayed in Figure 7.3. Within the Score- or Decision-level Fusion module the scores
{s1,82,...,sn.} are combined into a single fused score s ; from which the decision d ¢
is taken based on a score threshold. Note that a scoreis valid only when there is a match
from the corresponding template protection system and occurswhen s ; < t.. Therefore
we set the error-correcting capacity ¢ . to its maximum (¢}) in order to obtain avalid score
for the largest range possible. Consequently, the secret size used for each of the N, pro-
tected templatesis equal to nine bits and does not depend on the score threshold. Hence,
at score-level fusion the score threshold determines the operating point of the ROC curve
and not the ECC setting. Combination methods such as the minimum (MIN), the max-
imum (MAX), and the mean (MEAN) of the scores are used in order to obtain s . For
the MEAN method we take the mean of the valid scores only, while the MIN and MAX
methods are based on all the scores. We take the maximum based on al the scores be-
causeif thereisasingleinvalid scoreit should lead to anon-match. Furthermore, for each
method, if al the scores are not valid it will automatically lead to a non-match.

The ROC curvesat the optimal setting of n. = 255 aredepicted in Figure 7.4 with the
detailsin Table 7.3. Asacomparison, weincluded the ROC curve obtained at feature-level
fusion indicated as “FTR”. Because it suffices to guess a single £ from one of the N,

Table7.2: TheEER and 3;,,, and their ¢i and operating point for theindividual algorithms
Algol and Algo2 at different settings of n.. The last column is the effective secret size
|K ¢| whichisequal to the secret size k.. of the ECC at the operating point ¢, for achieving
Qtar.

Ne EER RHD Btar RHD K¢
(%] (%] (%] (%] [bits]

Algol

696 | “3.76 +0.25" “38.8" | “16.13 £1.93" “33.62" X

511 | “3.69+0.30" “35.2" | “15.194+1.79" “28.77" X

255 | “4.02 £0.41" *27.5" 15.84 +£2.10 19.61 21
127 4.88 £0.47 23.6 18.95 +2.01 14.96 29

Algo2
476 5.44 +0.35 22.1 37.69 + 3.14 11.76 X
255 5.06 £ 0.30 10.2 30.25 +2.88 1.96 215

127 8.92+0.33 3.9 89.57 £ 1.20 0.00 120
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Figure 7.4: ROC curves at score-level fusion compared to the feature-level (FTR) curves
for the (a) Algol and (b) Algo2 algorithm.

protected templates to breach your privacy, the effective secret size |K ¢| of the template
protection system at score-level fusion for each method is aso nine bits. Consequently we
have omitted them from the table. The results indicate that taking the MIN method leads
to the best performance, however the difference is not significant when considering the
ci. Furthermore, the MIN method ROC curveis very close to the ROC from feature-level

fusion (FTR). Notethat for the Algol algorithmit is not possibleto estimate the EER for
all the methods, because the EER is at an operating point greater than ¢, hence there are
no valid scores.

We also observed that the ROC curves, especialy for Algo2, are very similar. At fur-
ther analysiswe discovered that the ROC curves convergeto a single onewhen decreasing
nc. Thiscan be explained asfollows. When selecting the most reliable components many
enrolment samples from the same subject have an identical binary representation f 5. For
example, for then. = 255 case 75% of the enrolled subjects have no differences between
the binary representation f of its N, enrolled samplesfor the Algol agorithmand 92%
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for the Algo2 agorithm, respectively. For then . = 127 case, the likelihood increases to
99% and 100%, respectively.

Multi-Sample Fusion at Decision Level Similar to the score-level fusion case a pro-
tected templateis created for each N, samples and compared with the single verification
sample. However, the Score- or Decision-level Fusion module combines the decision
{d1,da,...,dn,} into asingle fused decision d ;. Methods such as the OR-rule, AND-
rule, and majority voting (MV) are used in order to obtain d ;. For the AND-rule method,
all the decisions have to be a match in order for the final one to be a match too, while for
the OR-rule case only a single match leads to a final match. For the MV method more
than half of the decisions should be a match in order to have a final match.

Again, it suffices to break a single protected template for the adversary to know {5,
hence the effective secret size |K ;| is equal to the secret k. corresponding to the ECC
setting.

The experimental results are portrayed in Figure 7.5 with the performance details in
Table 7.4. As a comparison, we included the ROC curve obtained at feature-level fusion
indicated as “FTR". From these results we can conclude that the OR-rule fusion method
consistently leads to a better performance, followed by the MV method, and the worst
performance is with the AND-rue method. However, the difference is not significant.
Compared to feature-level fusion results, the OR-rule methods leads to a similar ROC
curve. The ROC curves, especially for the Algo2 algorithm, are very similar due to the
same reason as as discussed in the previous section where it was noticed that the reliable
binary representation f is very similar for every N, samples.

Summary and Discussions  We have compared performances of multi-samplefusion at
feature-, score-, and decision-level. At the optimal setting of n. = 255 we do not observe
a significant performance differences between either feature-, score-, and decision-level
fusion method. The effective secret size |[K ;| is the same at feature- and decision-level
fusion, and at its smallest at score-level fusion. Taking into account that at score and de-
cision level fusion a protected template has to be made and stored for each N, enrolment

Table 7.3: The EER and [3;.,, and their ¢i and operating point for the score-level fusion
experimentswith n, = 255.

Method EER RHD Brar RHD
(%] (%] (%] (%]
Algol, n. = 255
MEAN X X 16.45 £2.08  20.00
MIN X X 15.74 £2.09 19.61
MAX X X 19.48 +£2.08 20.39

Algo2, n. = 255
MEAN | 4.96 £0.28 10.6 | 31.46 £3.23 2.35
MIN 4.87+0.30 10.2 | 29.90+£3.29 2.35
MAX 5.494+0.29 114 | 33.494+3.08 2.35
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Figure 7.5: ROC curves at decision-level fusion compared to the feature-level (FTR)
curvesfor the (a) Algol and (b) Algo2 algorithm.

sample but only a single one at feature level, we can conclude that the best multi-sample
fusion method is at feature level. For security and privacy reasonsit is also not desired
to store multiple protected templates, which could facilitate the attacker with hacking the
protected template and either obtain the secret or the biometric dataitself. Furthermore, a
single protected template has a smaller storage capacity requirement.

When carefully analyzing the score- and decision-level fusion results, we can aso
conclude that the MIN-score and OR-decision methods have precisely the same perfor-
mance, similarly for the MAX-score and AND-decision methods. The explanation for
the MAX-score and AND-decision case is that if the maximum scoreis amatch it would
imply that al the other N, — 1 scores are also a match, which is also the requirement for
the AND-decision fusion method. The MIN-score and OR-decision performance simi-
larity can be explained by the fact that both methods require at least a single individual
comparison to be amatch in order for the final decision to be amatch.

Table 7.4: The EER and .., and their ¢i and operating point, and the effective secret
size |K | for the decision-level fusion experimentswith n. = 255.

Method EER RHD Brar RHD  [Ky|
[%] [%] [%] [%]  [hits]
Algol, n. = 255
AND | “4.76 £0.40° “29.0" | 19.48+£2.08 20.39 21
OR “3.95+0.39" “27.1" | 15.74+£2.09 19.61 21
MV “4.1140.44" “27.8" | 16.62+£2.05 20.00 21
Algo2, n. = 255
AND 5.49 + 0.29 114 | 33.49+3.08 235 207
OR 4.87 +£0.30 10.2 | 29.90+3.29 235 207
MV 4.89 +0.28 10.2 | 30.78£3.27 235 207
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7.2.5 Conclusions

With this work we have shown that it is possible to apply multi-sample fusion with the
HDS system at feature-, score-, and decision-level. Because the HDS system inherently
has only a decision as the output, we adapted the system accordingly in order to have
a score as output for the score-level fusion. As a distance score we took the number of
bits the ECC had to correct. Furthermore, applying fusion with template protection at
feature- or decision-level is straightforward and conventional. However, fusion at score-
level is different dueto the use of an ECC, which has alimited error-correcting capability.
Consequently, for each template protection system thereis only avalid score when there
isamatch.

Given the biometric database and feature extraction algorithms, our experimental re-
sults showed that at the optimal setting of n. = 255 there are no significant differences
between the best performance (ROC curves) obtained at feature-, score-, and decision-
level. Because at feature-level fusion only a single protected template is created, which
is better in terms of privacy and security protection and storage, we can conclude that the
optimal multi-samplefusionis at feature-level.
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7.3 Multi-Algorithm Fusion with Template Protection

7.3.1 Abstract

The popularity of biometrics and its widespread use introduces privacy risks. To mitigate
these risks, solutions such as the helper-data system, fuzzy vault, fuzzy extractors, and
cancelable biometrics were introduced, also known as the field of template protection.
In parallel to these developments, fusion of multiple sources of biometric information
have shown to improve the verification performance of the biometric system. In this
work we analyze fusion of the protected template from two 3D recognition algorithms
(multi-algorithm fusion) at feature-, score-, and decision-level. We show that fusion can
be applied at the known fusion-levels with the template protection technique known as
the Helper-Data System. We also illustrate the required changes of the Helper-Data Sys-
tem and its corresponding limitations. Furthermore, our experimental results, based on
3D face range images of the FRGC v2 dataset, show that indeed fusion improves the
verification performance.

7.3.2 Introduction

There is a growing popularity of using biometrics in applications ranging from simple
home or business applications with a small and limited group of enrolled people (for ex-
ample access control to buildings or rooms) to large-scal e systems used by an entire nation
or eventhe entireworld (for exampleidentity cardswith biometrics or the electronic pass-
port ePassport). However, its widespread use increases the privacy risks such as identity
fraud or activity monitoring by cross-matching between biometric databases of different
applications. Thefield of template protection providesthe technology that mitigates these
privacy risks by transforming the biometric template with a one-way functionin order to
guarantee the irreversibility property and by randomizing the biometric template in order
to guarantee that multiple protected templates from the same biometric sample cannot be
linked with each other. In the literature, multiple solutions have been presented to solve
these problems. Some examples are the Fuzzy Commitment Scheme [36], Helper-Data
Systems (HDS) [33-35], Fuzzy Vaults [76, 84], Fuzzy Extractors [64, 65], and Cancelable
Biometrics [58].

In parallel to these devel opments, fusion of multiple sources of biometric information
has shown to improve the recognition performance of the biometric system. As stated
in[18], thebasic principle of fusionisthe reconciliation of evidence presented by multiple
sources of biometric information in order to enhance the classification performance. As
described in [18], multiple sources of biometric information can be extracted from the
same biometric modality by (see Figure 7.6 for the case of fingerprints): (i) capturing a
sample of multipleinstances (left and right index fingerprint or iris) with the same sensor,
(it) using different sensors to acquire a different type of biometric samples from the same
instance, (iii) capturing multiple samples using the same sensor and instance, and (iv)
extracting multiple feature representations of the same biometric sample using different
algorithms. These cases are referred to as the multi-instance, multi-sensor, multi-sample,
and multi-algorithm systems, respectively. Further more, the fifth type is the multi-modal
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system, which is the fusion of sources of biometric information from multiple modalities,
for example fingerprint, face, iris, voice, palm or retina. To complete the summary from
[18], the sixth typeisreferred to as the hybrid system, which consists of acombination of
the aforementioned fusion types. Each multi-biometric fusion type can be implemented
at feature-level, score-level, or decision-level of the biometric system.

In [46], multi-sample, multi-instance, and multi-modal fusion has been applied using
the Fuzzy Vault as the template protection system. For multi-sample fusion a single mo-
saiced template is obtained from multiple fingerprint impressions from which the vault
is constructed. For multi-instance fusion the union of the minutiae sets of the left and
right index fingers is used to construct the vault. For multi-modal fusion, a fingerprint
and an iris sample are combined by concatenating the unordered minutiae set with the
transformed iriscode extracted from the fingerprint and iris samples, respectively. The
concatenated unordered set is used to construct the vault. The recognition performance
improved for all three cases as well asthe claimed security.

Our Contribution: Our work consists of applying multi-algorithm fusion with the
Helper-Data System. We show that fusion can be applied at feature-, score-, and decision-
level and illustrate the required changes of the Hel per-Data System and its corresponding
limitations. We experimentally determine the performance of different fusion methods
at each level. The experiments are based on 3D face range images of the FRGC v2
dataset [99], where we use two recognition algorithms from different vendors.

The outline of this paper is as follows. In Section 7.3.3 we briefly discuss the HDS
system, while in Section 7.3.4 we discuss the application of multi-algorithm fusion at
feature-, score-, and decision-level using the HDS system. The experimental setup and
results are provided in Section 7.3.5. We finish with the conclusionsin Section 7.3.6.

S o
% o

Instances Sensors Samples Algorithms

Figure 7.6: Multiple sources of biometric information using fingerprints as the single
modality.
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Figure 7.7: The HDS template protection scheme.

7.3.3 Template Protection Scheme

Many template protection schemes presented in the literature are based on the capability
of generating a robust binary vector or key from biometric measurements of the same
subject. The HDS system we consider is depicted in Figure 7.7. For the sake of co-
herence we use the terminology auxiliary data (AD) and pseudonymous identifier (PI)
proposed in [102], which isin line with standardization activities in |SO. From the real-
valued representation of the biometric sample, f € R, abinary vector fg € {0,1}Ve
is extracted within the Bit Extraction module. We use a single bit quantization scheme
based on thresholding and the reliable component selection (RCS) algorithm. The N
most reliable components are selected based on the estimated z-score for each compo-
nent. With use of the multiple enrollment samples, the z-score is estimated as the ratio
between the distance of the estimated mean with respect to the quantization threshold
and the estimated standard deviation, see [33] for a more detailed description of the z-
score estimation and the quantization scheme. The auxiliary data AD ; contains the index
information of the selected reliable components.

The binary vector f§ could be used as a key for any encryption purposes, however
it is not considered as being practical because of the high probability that it is not ex-
actly the same in both the enrollment and verification phase (f5 # f3), due to measure-
ment noise and biometric variability that lead to bit errors. The number of bit errorsis
aso referred to as the Hamming distance du (fg, £}). Therefore, error-correcting codes
(ECC) are used to dedl with the bit errors. Combining the ECC with a cryptographic
hash function forms the scheme also known as the Fuzzy Commitment scheme [36]. In
the enrollment phase, a binary secret or message vector K is randomly generated by the
Random-Number-Generator (RNG) module. A codeword C of an error-correcting code
is obtained by encoding K in the ECC-Encoder module. As the ECC we use the linear
block type code “Bose, Ray-Chaudhuri, Hocquenghem” (BCH) [145], which is specified
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by the codeword length (n..), message length (k.), and the corresponding number of bits
that can be corrected (¢.), in short [n., k., t.]. Some practical BCH settings are provided
in Table 7.5, where the bit error rate (BER) is the ratio ¢ /n.. The codeword is XOR-ed
with £ in order to obtain the auxiliary data AD . Hence, f should have the same dimen-
sion as C implying Ng = n.. Furthermore, the hash of K is taken in order to obtain the
pseudonymous identifier Pl. The larger the secret size the more difficult it is to guess K
from PI.

In the verification phase, a new biometric sample is taken and transformed into its
binary representation within the Bit Extraction module with help of auxiliary data AD ;.
The new word C* is computed by XOR-ing £y with AD,. The candidate secret K*
is obtained by decoding C* in the ECC-Decoder module. Subsequently, the candidate
pseudonymousidentifier Pl * iscomputed by hashing K *. Thedecisionin the Comparator
module is based on whether Pl and Pl * are bitwise identical.

The Comparator module yields identical Pl and Pl when the number of bit errors
between the binary vectors f§ and £ is smaller or equal to the error-correcting capabil-
ity t. of the ECC. Thus, there is an accept when the Hamming distance is smaller than
te, du(fy, f5) = ||fg @ 3|, < tc. Therefore, the fuzzy commitment scheme can be
considered as a Hamming distance classifier with threshold ¢ .. Note, that the maximum
number of bits that the BCH can correct ¢ is close to 25% of the codeword length. In the
remainder of the text, we indicate this limitation as the ECC-limitation.

As adistance score s we use the number of bits that had to be corrected by the ECC
decoder. The candidate secret K* is encoded to its corresponding codeword C and is
XOR-ed with C* in order to obtain the error pattern e. The error pattern is equal to the
bit differences between the enrollment and verification binary feature vectors (f § @ £f) as

Table 7.5: Some examples of the BCH code given by the codeword (n . and message (k.)
length, the corresponding number of correctable bits (¢ .), and the bit error rate (BER)

te/Ne.

N |kC | te |BER:tC/nC

0,
HEE
w2
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Figure 7.8: A toy-example of a multi-algorithm fusion system.

Fusion
Classifier

follows .
e =CapC*
= C o (fy ® AD2)
=Cao(fyfe(f;eQ) (7.2)

= (CeC) e (fyofy
= (fs @ fy)if C=C,

where C is equal to C when there is an accept, i.e. K and K* are equal. The distance
score s is thus the sum of the error pattern, hence equal to d (£, £) and only a valid
score when thereis an accept, i.e. du (g, f}) < t.. If the scoreis not valid we only know
that d (£5, £5) > t..

7.3.4 Applying Template Protection at Different Fusion L evels

In this work we are interested in the multi-algorithm fusion system as depicted in Fig-
ure 7.8, where a 3D image is taken of the face of the subject from which the feature
vectors f) and f3 are extracted using two different feature extraction algorithms. These
features are compared with their enrolled version {f7, f5} within the Fusion Classifier
module and a decision d is made whether to accept or reject the identity claim of the
subject.

The comparison within the Fusion Classifier module can occur at different levels,
namely at feature-, score-, or decision-level. In the following sections we discuss the
implementation of the template protection system at the different fusion levels.

Feature-Level Fusion

Applying the template protection scheme at feature-level fusion is straightforward, the
two feature vectors f; and f; are concatenated before entering the template protection
scheme, thus f = [f1;fz]. The fused feature vectors have more components and most
likely more components that have discriminating and robust properties. Hence, it is ex-
pected that more robust and discriminating bits can be extracted, which allows the use of
larger binary vectors fg and thus larger codewords. It is known from the BCH code that
larger codewords are more efficient, they have a larger secret at the same hit error rate
(BER), see Table 7.5.



208 Chapter 7. Multi-Sample and Multi-Algorithm Fusion

du (£ 5, 5 ,)
dH(f§727 f]‘é,Q)

(2551 Ne 1 te Ne,1
dH(fEJ’fl\é,l) dH(fI%,pfl%,l)
(a) AND-rule (b) OR-rule

Figure 7.9: Decision boundaries for the (a) AND and (b) OR decision fusion rule. The
operating point ., is at the intersection of the decision boundary given by ¢ ., and ..

Decision-L evel Fusion

At decision-level fusion there is a template protection system for each source of bio-
metric information with an individual decision for each system. The two decisions can
be fused into a single decision d; using a AND-rule or OR-rule. For the AND-rule,
there is afinal accept if and only if both template protection systems lead to an accept,
thus du(fg ;. f5 ;) < tc; and du(ff ,, £ ,) < tc,. The acceptance region is the
intersection defined by the individual decision boundaries crossing the operating point
top = {top,1s top2} = {tc1,tc 2} @ shownin Figure 7.9(a). For the OR-rule, thereis
afinal accept if at least a single template protection system gives an accept. Hence, the
acceptance region is the union of both as portrayed in Figure 7.9(b).

Under the assumption that the binary vectors f are randomly distributed in {0, 1} =,
it follows from the results in [146] that the maximum amount of privacy information
that the HDS system can preserve is equal to the secret size |[K| = k. from the ECC.
The average number of attempts necessary for the adversary to randomly guess the se-
cret K from its hashed version Pl is equal to %2’%. For the first source the secret size is
|K1| = k. ; and |[K2| = k. o for the second source. For the OR-rule fusion, only one
of the hash values has to be guessed correctly for a successful attack, hence the effective
secret size in the fused setup is equal to the smallest secret size |[K ¢| = min(ke 1, ke 2).
In case of the AND-rule fusion, both hash values have to be guessed correctly indepen-
dently, thus the effective secret sizeis |K ;| = log, (2F1 + 2F<.2) < max(kc 1, ke 2) + 1,
where the equality holds only when k. ; = k. 5. This can be improved by combining
or concatenating both secrets prior to hashing. In that case, the effective secret size is
K| = [Ki| + [Kz| = ke 1 + ke 2.
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Figure 7.10: Score fusion with template protection.
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Figure 7.11: Examples of the decision boundariesfor the score-level fusion case with (a)
the AND- and (b) OR-configuration.

Score-Level Fusion

A general implementation of the template protection system at score-level fusion is de-
picted in Figure 7.10. Each source of biometric information has a separate template pro-
tection system with a decision and score value as output. Note that we are using the
number of corrected bits within the ECC as the distance score that is valid only when
there is an accept, see Section 7.3.3. Both scores (s; and s;) and decisions (d; and ds)
are combined in the Score & Decision Fusion module into a single decision d ;. With
the available scores, more flexible decision boundaries can be defined when compared to
the AND-rule and OR-rule decision-level fusion cases that were presented in Figure 7.9.
Similar to the decision-level fusion case, an AND- or OR-rule can be used based on the
decision d;, which is now extended by incorporating the scores s ; to determine the final
decision dy. Hence, there are two cases we refer to as the AND-configuration and the
OR-configuration case.

For the AND-configuration case the initial acceptance region is similar to the AND-
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rule case as shown in Figure 7.9(a). However, with use of the scores s; a more refined
decision boundary given by afunction f(s1, s2) can be defined. We mainly focus on the
Sum-rule and Weighted-Sum-rule given as

sf = wiS1+ wasy, Withw +wy =1, (7.3

where the Sum-ruleis a degenerate case of the Weighted-Sum-ruleby using weights equal
to % If thereis an accept for both sources (d; = ds = 1 = “Accept”), then thereisonly
afinal accept (dy = 1) if the scores s; and s, arein the acceptance region defined by the
function f(s1, s2), see Figure 7.11(a) for an example of the acceptance region using the
Weighted-Sum-rule.

For the OR-configuration case, the same boundaries can be defined as for the AND-
configuration case when there is an accept for both sources. However, if thereisasingle
accept itisstill possibleto giveafinal accept if thesingle score s; issmaller than a stricter
threshold ¢}. We use a stricter threshold because the final decision is now only based on a
single source of biometric information. An example of the acceptance region is depicted
in Figure 7.11(b). Note that we define the stricter threshold ¢ (¢3) as the intersection of
the decision boundary function f (s, s2) withthet. 5 (¢ 1).

7.3.5 Experiments

In the previous section we presented the methods for multi-algorithm fusion at feature-,
score-, and decision-level. In this section, we empirically validate the best performance
achieved at each level by means of a biometric database and two feature extraction algo-
rithms.

Experiment Setup

Biometric Databases All the results in this work are obtained using the FRGC v2
dataset [99] containing atotal of 4007 3D shape samples from 465 subjects.

However, one of the 3D shape recognizer we used could not successfully extract a
feature vector out of each sample, hence reducing the dataset to 3507 samples from 454
subjects. Asthe template protection algorithm works best at multiple enrollment sampl es,
the subset of subjectswith at least 6 (5 as enrolment samples with at least one for the ver-
ification) samples or moreis selected. This resulted into a subset of 261 subjects with in
total 2970 samples.

Feature Extraction Algorithms Thefirst algorithm is the shape-based 3D face recog-
nizer from [106] and is referred to as Algol. It has two main steps: 1) the alignment
of faces, and 2) the extraction of surface features from 3D facia data. In the alignment
step, each face is registered to a generic face model (GFM) and the central facial region
is cropped. The GFM is computed by averaging correctly aligned images from atraining
set. After the alignment step, we can assume that all faces are transformed in such away
that they best fit the GFM, and have the same position in the common coordinate system.
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After alignment, the facial surfaceis divided into 174 local regions. For each region,
the maximum and minimum principal curvature direction are computed. Each of the two
directions is presented by the azimuthal and the polar angle in the spherical coordinate
system. Combining al theregionsleadsto afeaturevector dimension Ny = 174x2x2 =
696.

The second algorithm, Algo2, is a histogram-based feature extraction method. After
the pre-registration of theface data, afrontal view of theface model is obtained, wherethe
tip of thenoseisat the originin the Cartesian coordinate system. The distribution of depth
values of the normalized face model describes the characteristics of an individual facial
surface. In order to obtain more detailed information about the local geometry, the 3D
model is divided into several sub areas which are orthogonal to the symmetry plane of the
face. The features are extracted from the depth value distribution in each sub-area. The
feature vector dimension is Ny = 476. A full description of this algorithm is provided
in[147].

For both feature extraction algorithms, the raw feature vectors they produce are used
asinput of the template protection system as described in Section 7.3.3. Hence, no signa
processing is performed.

Testing Protocols The performance testing protocol consists of randomly selecting
50% (130) subjects as the training set and the other subjects as the test set, thisis re-
ferred to as the training-test-set split. The template protection system parameters such
as the quantization thresholds, used within the Bit Extraction module, are estimated on
this training set. Hereafter, the test set is randomly split into an equally sized fusion-
training and evaluation set containing around 65 subjects each. All the training needed
for fusion is thus performed on the fusion-training set and the reported performance is
obtained from the evaluation set. From the evaluation set, 5 samples of each subject are
randomly selected as the enrollment samples while the remaining samples are considered
as the verification samples. This split is referred to as the enrollment-verification split.
The protected template is generated using all the enrollment samples and compared with
each verification sample.

The training-test-set split is performed five times, while for each split the enrollment-
verification split is performed five times. From each enrollment-verification split we mea-
surethe S;., (thefaseregjectionrate (FRR, ) at the targeted false acceptance rate (FAR,
a) of aay = 0.25%) and the equal-error rate (EER), which istheerror rate achieved at the
operating point where both FRR and FAR are equal. With use of the 25 measurementswe
estimate the 95% confidenceinterval (ci) defined asci = 1.960 ppr/ \f(25) for the EER
case whileusing o,,, for the .., case, respectively. Note, that the splits are performed
randomly, however the seed at the start of the protocol is always the same, hence all the
splits are equal for the performance tests at feature-, score-, and decision-level fusion.
Hence, the splitting process does not contribute to any performance differences.

Experiment Results



212 Chapter 7. Multi-Sample and Multi-Algorithm Fusion

1 1
++W
O
0.95 0.95 4
&
0.9 ¢ 9 4 0.9
<
0.85 O B 0.85
e () e
| o8 o : | o8
0.75, ¢ R 0.75
o7 * ~©- 696 07
’ -+-511 ’ —©- 476
0.65 HESSE TS : : O 255 0.65 -+- 255
127 O 127
%0 107 107 107 W 107 107 107 10°
o o
(a) Algol (b) Algo2

Figure 7.12: Individual ROC curves for algorithm (a) Algol and (b) Algo2 at different
settings of n..

Individual Algorithm Performances Before we start fusing the different biometric
sources, we first determine their individual performance as given by the ROC curvesin
Figure 7.12 for different codeword lengths n . with the EER and ., detailsin Table 7.6.
The table providesthe ci for both EER and 5, and their operating point provided as the
relative Hamming distance (RHD). The right column of the table providesthe secret size
|K| of the ECC corresponding to the ¢ setting that leads to closest o but smaller than
thetarget a,,. Thisisthe ECC setting with a BER just larger than the operating point in
RHD corresponding to f:.,. Entriesin the table indicated with quotes cannot be reached
in practice because of the ECC-limitation, however we are able to estimate them because
of the Hamming distance classifier assumption as discussed in Section 7.3.3. Entrieswith
“X" can neither be reached nor estimated.

Note that we used five enrollment samples (V. = 5) from which the average is taken.
Also note that the ROC curves are limited because of the ECC-limitation. In order to

Table7.6: TheEER and (3., and their ¢i and operating point for the individual algorithms
Algol and Algo2 at different settings of n.. Thelast column is the secret size |K| of the
ECC at the operating point ¢ for achieving a,.

Nc EER RHD Btar RHD K]
(%] (%] (%] (%]  [hitg]

Algol

696 | “3.75+£0.21" “38.8" | “16.02 £ 1.61" “33.6" X

511 | “3.69+0.26" “35.0" | “14.91 £1.63" “29.0” X

255 | “3.99 £0.35" “27.5" 15.33 £1.84 20.0 21
127 4.84 +0.42 23.6 19.18 £1.82 15.0 29
Algo2
476 5.44 +0.35 22.1 37.69 + 3.14 11.8 45
255 5.06 +0.30 10.2 30.25 + 2.88 2.0 215
127 8.92 £0.33 3.9 89.57 £ 1.20 0 120
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Figure 7.13: ROC curves at feature-level fusion of Algol and Algo2 algorithm.

reach larger o and smaller 8 valuesiit is required to tolerate and thus correct more bit
errors. However, the error correcting capability of an ECC is limited. From the results
we can conclude that both algorithms perform optimally at a codeword size of n . = 255.
These settings are used in the score- and decision-level fusion analysis. Compared to the
Algo2 agorithm, Algol has a better performance but a smaller secret size (see Table 7.6,
right column).

Multi-Algorithm Fusion at Feature-Level At feature-level we concatenate both fea-
ture vectors together and consider it as a single feature vector. The new dimension of
the feature vector is 1175. Because of the larger dimension it is possible to use larger
codeword lengthsasin theindividual casein Section 7.3.5. The performancesat different
codeword lengths are shown in Figure 7.13 with the EER and 3., detailsin Table 7.7.
The best performanceis achieved by using the largest codeword length of 1023 hits. It is
just able to reach the targeted «v¢,, that leadsto a B;., = 11.1%.

Multi-Algorithm Fusion at Decision-Level At decision and score-level fusion, the
scatter plot of the genuine and imposter scores of both algorithms, as shown in Fig-

Table 7.7: Performance results of multi-algorithm fusion at feature-level.

e EER RHD Brar RHD  |K|
[%] [%] [%] [%]  [bits]
1023 | "2.45 £ 024" 296" | 11.10=1.70 245 11
511 | 2.89+0.34 186 | 12.884+1.71 11.7 103
255 | 3.89+£0.32 118 | 22.79+264 51 155
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Figure 7.14. Scatter plot of the genuine (Gen) and imposter (Imp) scores of the algo-
rithms Algol and Algo2. The operating point ¢, is at the intersection of the vertical and
horizontal decision boundaries of Algol and Algo2, respectively.

ure 7.14, may indicate the possible gain when fusing at these levels. The scatter plot
also depicts the decision boundary indicated by the operating point ..

We will investigate both the AND-rule and OR-rule performance at different strate-
gies of moving the operating point ¢op, = {top.1, top,2} ON the scatter plot, whose range
iS top,1 €0, t7 1] @nd top2 € [0, t; ,] for each axis respectively, with t7 being the
maximum error-correcti ng capability ‘of the ECC. In the first case (c-1) we consider
top,2 = top,1 @nd vary ¢, 1 from O to ¢} 1 considering that ¢} 1= ts o because the op-
timal individual performanceisat the same codeword length as observed in Section 7.3.5.
In the second case (c-2), the operating point crosses the EER operating point of the indi-
vidua performances {t prr,1, terr,2} linearly, hence the operating point is defined as
top = {top,1, 1225210 1} With top1 € [0, min(t; |, ZEEL )] In the third and final
case (c-3) we use the optimal fusion method from [148], which estimates the perfor-
mance in terms of « and /3 at each possible operating point in the scatter plot and takes
the operating points on the envelope which leads to the best performance. This optimiza-
tion process of finding the optimal operating points is in fact a training process and is
thus performed on the fusion-training set. The final performance results are obtained by
calculating the performance of the test set on the optimal operating points.

The performance results of the three cases are shown in Figure 7.15(a) for the AND-
ruleand Figure 7.15(b) for the OR-rulerespectively with the performancedetail s provided
in Table 7.8. Because there are two template protection systems we provide the RHD of
the operating point and the secret size for each system. From the results we can conclude
that the optimal decision fusion method (c-3) leads to the best performance for both the
AND-rule and OR-rule method. The performance differences between the three cases of
moving the operating point is very small for the AND-rule method, while significant for
the OR-rule method. This difference becomes more evident when analyzing the tragjectory
of the operating point as depicted in Figure 7.16. The optimal operating points obtained
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Figure 7.16: The operating points trajectory for the three cases (c-1, c-2, ¢-3) for the
AND-rule and OR-rule decision fusion methods.

Table 7.8: Performance results of multi-algorithm fusion at decision-level. The operating
points and secret size are provided for both template protection systems.

Ne EER RHD Btar RHD K]
[%] [%] [%] [%] [bits]

AND-rule

¢l X X 13.45 £ 1.87 [20.8,20.8] [21,21]

c-2 X X 12.71+2.59 [23.9,9.0] [9,99]

c-3 X X 11.34 +2.72 [22.0,13.7] [13,47]
OR-rule

c1[4.78 £0.29 [10.2,10.2][29.83 £ 3.31 [2.4,2.4] [207,207]

c-2|3.46 £0.34 [21.2,7.8] |28.23+3.50 [6.7,2.4] [131,207]

c-3|3.27£0.38 [24.7,5.9] |12.58 £6.27 [19.2,0.8] [21,239)
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by the optimal AND-rule method (c-3-AND) is between the operating points of cases
c-1 and c-2. However, for the optimal OR-rule method (c-3-OR) the obtained operating
points are significantly different than for case c-1 and c-2. For the first few points the
operating points moves to the right, tangent to the x-axis (¢ ,,,1 increaseswhilet,, » stays
relatively constant) and sharply moves up (t,p,2 increases) once t,, ; reaches the limit
of ¢. ;. Because the optimal fusion method facilitates more flexibility of the operating
points, it significantly improvesthe performance asis shown in Figure 7.15(b).

Observe that the OR-rule is able to obtain a greater part of the ROC curve than the
AND-rule, as the OR-rule is able to reach the EER operating point while the AND-rule
cannot, while both have the same ECC-limitation. The decision boundariesin Figures7.9,
7.11, and 7.14 clearly show that at the same operating point the OR-rule has a larger
Accept area than the AND-rule and can thus achieve alarger o and smaller .

The effective secret size as discussed in Section 7.3.4 depends on the configuration
being used. For the AND-configuration, the total secret size is the sum of the secret size
of each template protection system individually. For the OR-configuration case the effec-
tive secret size is the minimum of both.

Multi-Algorithm Fusion at Score-Level The scatter plot indicates that using a Sum-
rule or Weighted-Sum-rule score fusion method should improve the overall performance
with respect to the individual performances. For the Weighted-Sum-rule method given
by (7.3), the weighting coefficients are estimated from the digunct fusion-training set as
discussed in Section 7.3.5. The weights are iteratively varied and the values with the
best performance in terms of the EER are selected. If the EER cannot be estimated, for
exampl e because of the ECC-limitation, we optimize using [, instead.

The score fusion algorithm can only be applied when the scores of both algorithm are
available as portrayed by the accept region in Figure 7.11(a) for the AND-configuration
case. The accept region can be extend by using the OR-configuration given in Fig-
ure 7.11(b). If only asingle score s (s2) is available a stricter threshold ¢ (¢3) is used.
Note that the ECC settings are set to ¢ for both template protection systems in order to
have the largest acceptance region where both scores are avail able, hence fully benefitting
from the score-fusion method. Thus, the threshold variable for the ROC curve becomes
the weighted sum given by (7.3).

The results for the Sum-rule and Weighted-Sum-rule score fusion methods are de-
picted in Figure 7.17(a) and (b), respectively. We investigate both the AND- and OR-
configuration indicated as Sum-AND and Sum-OR for the Sum-rule and WSum-AND
and WSum-OR for the Weighted-Sum-rule. As a comparison, the classical Sum-rule and
Wei ghted-Sum-rule without the ECC limitation are included and referred to as Sum-Clas
and WSum-Clas, respectively. The average weights [w, w2] found during the fusion
training are [0.59, 0.41] for the WSum-Clas case, 0.7, 0.3] for the WSum-AND case, and
[0.8,0.2] for the WSUm-OR case. More performance details are providein Table 7.9. Be-
cause there are two templ ate protection system we provide the RHD of the operating point
and the secret size for each system. Interms of the 5., values, the resultsindicate that the
AND-configuration outperforms the OR-configuration but not the classical results with-
out the ECC-limitations. Within the AND-configuration, the Weighted-Sum-rule has the
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Figure 7.17. ROC curves at score-level fusion using (a) the Sum-rule and (b) the
Weighted-Sum-rule. In both cases we compare the classical performance (Clas) where
thereis no ECC-limitation with the AND- and OR-configuration with ECC-limitation.

best performances, while the Sum-rule has a better performance for the OR-configuration
case. Note, that al the measured differencesare within the estimated confidenceintervals,
hence the observed differences cannot be considered as being significant. The results also
show that the Sum-AND (WSum-AND) curve follows the Sum-Clas (WSum-Clas) curve
at smaller o values, but starts deviating at larger « values. At smaller « values the accept
areafor the SUm-AND case is not limited by the ECC-limitation and is thus equal to the
accept area of the Sum-Clas case. This also holds for the WSum-AND and WSum-Clas
scenario only if the weights are equal for both cases. However at larger o values the deci-
sion boundary is at alarger Hamming distances with the consequence that the accept area
for the WSUum-AND and Sum-AND cases are limited by the ECC-limitation as shownin
Figure 7.11(a) and approaches the accept areafor the AND-rule c-1 decision-level fusion
method case as depicted in Figure 7.9(a). Under the same conditions this also holds for
the OR-rule cases. The convergence of the score-level fusion ROC curves towards the
decision-level curvesare portrayed in Figure 7.18.

Table 7.9: Performance results of multi-algorithm fusion at feature-level.

case EER ﬁtar |K|
(%] (%] [bits]
Sum
Clas | 2.58 £0.30 9.83 £1.81 19,9]
AND X 10.26 £1.80 | [9,9]
OR 3.454+0.37 | 10.38 £1.56 | [9,9]
WSum
Clas | 2.57£0.32 9.58 £1.74 19,9]
AND X 9.63+£2.20 | [9,9]
OR 3.284+0.39 | 11.68+1.74 | [9,9]
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Figure 7.18: Convergenceof the score-level fusion ROC curves (Sum and Wsum) towards
the decision-level curves(c-1) for the (a) OR-rule and (b) AND-rule cases.

Table 7.10: Summary of empirical results of multi-algorithm.

Type [EER RHD Btar RHD ke
(%] [%] (%] (%] [bits]
Feature | x X [11.10 £1.70 24.5 11
Score | X X | 9.63+2.20 [24.7,24.7] [9,9]
Decision| x  x |[11.3442.72 [22.0,13.7] [13,47]
Algol | x X [15.33+1.84 20.0 21
Algo2 X X |30.25 £ 2.88 2.0 215

Because we fixed the ECC correcting capability at ¢ the secret size for each pro-
tected template is 9 bits at n. = 255 and the effective secret size is the sum of 18 bits
for the AND-configuration when both secrets are concatenated before hashing. For the
OR-configuration case the effective secret size is the minimum of both, hence 9 hits.

Summary and Discussions Asasummary we compare the performance of theindivid-
ual agorithms with the best performances obtained at each fusion level, see Figure 7.19
for the ROC curves with the details in Table 7.10. The best performance at feature-level
fusion was with a codeword of 1023 bit. At score-level fusion, the best performance is
obtained using the Weight-Sum-rule with the AND-configuration, while at decision-level
fusion the optimal AND-rule method led to the best performance.

Compared to the individual performances, the performance improvement with fusion
interms of 3., exceeds 6%. The difference can be considered as significant because the
combined confidence interval is around 4%. The best performanceis obtained at score-
level fusion, however the differences with the feature- and decision-level fusion methods
are not significant. The effective secret size at score-level fusion is close to the secret size
of the best individual algorithm. Hence we can conclude that the performance has been
improved while maintaining a similar effective secret size.
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Figure 7.19: Overview of the best ROC curves obtained at feature-, score-, and decision-
level fusion, and the individual algorithms Algol and Algo2.

7.3.6 Conclusions

We have shown that it is possible to apply fusion with the Helper-Data System at feature-
, score-, and decision-level. However, the Helper-Data System inherently has only a
decision as the output, hence it had to be adapted in order to have a score as output for the
score-level fusion. We took the number of the bits the ECC had to correct as the distance
score measurement.

Furthermore, we have also shown that applying fusion with template protection at
feature- or decision-level is straightforward and conventional. However, fusion at score-
level is different dueto the use of an ECC, which hasalimited error correcting capability.
Consequently, for each template protection system thereis only avalid score when there
isamatch. Hence, this ECC-limitation limits the decision boundaries.

The performanceat all fusion levelsis significantly better than the performance of the
individual biometric sources. The best performanceis obtained at score-level fusion, with
a Byar improvement of 6% while maintaining a similar secret size.
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7.4 Chapter Conclusions

We have shown that it is possible to apply multi-sample and multi-algorithm fusion with
the HDS system at feature-, score-, and decision-level. Because the HDS system in-
herently has only a decision as output of the comparison stage, we adapted the system
accordingly in order to have a score as output for fusion at score-level. As the distance
score we took the number of bits the ECC had to correct. Furthermore, applying fusion
with template protection at feature- or decision-level is straightforward and in line with
conventional approaches. However, fusion at score-level is different due to the use of an
ECC, which has a limited error-correcting capability. Consequently, for each template
protection system there is only a valid score when there is a match. Hence, this ECC-
limitation limits the decision boundaries for fusion at score-level, see Figure 7.11.

For multi-sample fusion, no significant classification performance difference has been
observed at feature-, score-, and decision-level. Because fusion at feature-level has only
a single protected template, which is better in terms privacy and security protection and
storage, we can conclude that the optimal multi-samplefusionis at feature-level. Thishas
been the practice of many published paper on of the HDS in which multiple enrolment
samples are being used, however a detailed analysis was so far missing.

For multi-algorithm fusion, the classification performance at feature-, score-, and
decision-level are better than the performance of the individua biometric sources. De-
spite the ECC-limitation of fusion at score-level we obtained the best performance, where
the absol ute difference between the FNMR at the target FMR is 6% while maintaining a
similar key size.



Chapter

Conclusions, Recommendations,
and Future Directions

In this thesis we have analyzed the helper-data (HDS) template protection scheme from
different perspectives. From the main research question

What isthe performance of the helper-data template protection scheme?

we deduced the four more specific research questions, namely.
Given the hel per data template protection scheme:

1 What isthe theoretical classification performance?

i How can we model the classification performance?
ii How do the system parametersinfluenceit?
iii How does it compare with the classification performance without
template protection?
2 What isthemaximum key size at agiven target classification performance
and system parameters?
3 How does the information leakage from the auxiliary data affect the
irreversibility and unlinkability property?
4 How can one realize fusion with protected templates and to what extent
can it improve the classification performance?

8.1 Answerstothe Research Questions

The answers to the four research questions are discussed separately in the following sec-
tions.

221
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8.1.1 Theoretical Classification Performance

In Section 3.2, we have shown that it is possible to theoretically determine the classi-
fication performance of the HDS based on a single bit extraction scheme employing a
single quantization threshold. This was primarily accomplished by deriving a closed-
form analytical expression of the average bit-error probability of the bit extracted from a
component. The naive model assuming independent feature components with a homoge-
neous within-class variance has alarge deviation, which can be reduced by incorporating
the dependent and non-homogeneousfeature components. Increasing the system parame-
ters, such as the number of enrolment and verification samples, improve the classification
performance by reducing the within-class variance, and also improve the performance
estimation due to the central limit theorem.

In Section 3.3 we have shown that the classification performance of the unprotected
templates (on continuous level) using the optimal likelihood ratio classifier is better than
the performance of the protected templates using the HDS with a single bit extraction
scheme based on a single quantization threshold. The results are optimistic, because they
are based on the naive Gaussian model of independent components with a homogeneous
within-class variance across the population, which seems not to hold in practice as we
have shown in Section 3.2.

8.1.2 Maximum Key Size

We determined the maximum key size using the theoretical performance of the Gaussian
framework from Section 3.2 and assuming the ECC operating on Shannon’s bound. An
important finding of this work is the fact that the maximum key size we determined is
a couple of bits smaller than the upperbound of the key size for the HDS known in the
literature, namely — log,(auay) Of (4.21) where ay,, is the target FMR. The difference
can be a couple of bits and increases with the number of feature components. When
the FMR is taken as the target performance, the maximum key size is determined by
the upperbound given by — log, (at.r). However, when taking the FNMR as the target
performance, the maximum key size depends on the target FNMR, the input capacity, the
number of feature components, and the number of enrolment and verification samples.

With respect to the number of enrolment and verification samples, we have shown
that increasing the number of enrolment samplesto infinity leadsto asimilar performance
when doubling both the number of enrolment and verification samples.

Considering the fact that having a larger target FNMR and more enrolment and veri-
fication samples do influence the convenience of the biometric system, we have shown a
trade-off between the protection capability of the HDS in terms of key size and its conve-
nience.

8.1.3 Information L eakage of the Auxiliary Data

In Section 6.2, we have shown that great care hasto be taken when designing the DROBA
bit extraction scheme in order to guarantee that AD; does not leak information about the
binary vector extracted from the biometric sample and therefore affecting the irreversibil-
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ity property. When not properly designed, the information leakage can be significant and
an adversary is able to exploit this information and increase its success rate of imper-
sonation by two orders of magnitude. As a solution to reduce this information leakage,
we proposed and validated a remedy which in fact is a guideline on how to restrict the
alocation freedom of the DROBA a gorithm.

In Chapter 5 and Section 6.3 we have shown the cross-matching possibility of both
AD; and AD,. When having a balanced system, where the number of enrolment and
verification samples are equal, the cross-matching performance is worse than the clas-
sification performance of the HDS. When there are more enrolment samples the cross-
matching performance can become better than the system performance. Therefore, we
would advice not to use more than four enrolment sampleswhen thereis asingle verifica-
tion sample. On the other hand the cross-matching performance can be made significantly
worse with respect to the system performance by only increasing the number of verifica-
tion samples. The cross-matching possibility due to the decodability attack on AD 5 can
be made close to random by introducing an application dependent bit-permutation ma-
trix randomization process (see Figure 8.1). The cross-matching on AD; is caused by
the use of subject-specific information within the bit extraction scheme, which has to be
stored in AD;. Hence, improving the system performance by using more subject-specific
information also improves the cross-matching performance.

In general, due to the information leakage we haveidentified, it is advisable to protect
the bit extraction auxiliary data AD; by data separation principles (stored on a token) or
by using encryption techniques.

8.1.4 Fuson

In Chapter 7 we have shown that it is possible to apply multi-sample and multi-algorithm
fusion with the HDS system at feature-, score-, and decision-level. We adapted the HDS
accordingly in order to facilitate fusion at score-level. We took as distance score the
number of bits the ECC had to correct. Due to the limitation of the error-correcting
capability of the ECC, the decision boundariesfor fusion at score-level are restricted, see
Figure 7.11. For multi-samplefusion, no significant classification performancedifference
has been observed at feature-, score-, and decision-level. For multi-algorithm fusion,
the classification performances at feature-, score-, and decision-level are better than the
performances of the individual biometric sources. Despite the ECC-limitation of fusion
at score-level we obtained the best performance, where the absolute difference between
the FNMR at the target FMR is 6% while maintaining asimilar key size.

8.1.5 Thelmproved Helper Data System

From the answers to the these research questions we obtained an improved HDS scheme
that is portrayed in Figure 8.1. The improvements are twofold, namely (i) from the re-
sults of the first part of the third research question (see Chapter 5) we proposed the Bit
Randomizer module using a bit permutation transformation in order to prevent the decod-
ability attack that leads to cross-matching and (ii) from the results of the fourth research
question (see Chapter 7) we introduced the Score Generation modulein order to generate
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Figure 8.1: The improved helper-data system (HDS) template protection scheme with
the required Bit Randomizer module using a bit permutation transformation in order to
mitigate the cross-matching possibility based on the decodability attack (see Section 5.2)
and the Score Generation module in order to generate a score that can be used for fusion
at score-level (see Chapter 7).

ascore that can be used for fusion at score-level.

8.2 Recommendations

Optimal Features An important parameter for protection of the HDS is the extracted
key size, which depends on the performance of the underlying biometric recognition sys-
tem. It isthus of great importance to improve the underlying feature extraction algorithm
in order to extract features of better quality, i.e. features with a larger ratio of between-
class and within-class variance. Furthermore, the maximum key size can be optimized
by adapting the feature extraction algorithm such that the format of the feature vectors
is optimized for the template protection scheme, ensuring equal feature quality with the
optimal number of feature components.

Multiple Samples By averaging multiple samples the within-class variance will reduce
and consequently the classification performance will improve. Furthermore, the within-
class distribution becomes more Gaussian and therefore better fits the Gaussian model
used for feature sel ection and quanti zation parameter. We have shown that increasing the



8.3. FutureDirections 225

number of enrolment samples to infinity leads to a similar performance when doubling
both the number of enrolment and verification samples. Hence, it is recommended to
avoid the case that the number of enrolment samples is significantly larger than the num-
ber of verification samples, because the HDS classification performance will not improve
significantly, while we have shown that the cross-matching performance can significantly
improve and outperform the HDS performance. If thereis a single verification sample, it
would therefore be advised not to use morethan 4 enrolment samples. The cross-matching
performance can be degraded with respect to the HDS performance by increasing the
number of verification samples. However, capturing more verification samples increases
the verification time and may be considered as inconvenient.

Subject-Specific Information TheHDS classification performance can beimproved by
using bit extraction schemesthat incorporate more subject-specific information. However,
care has to be taken as the subject-specific information has to be stored as part of the
protected template and may leak information affecting the irreversibility and unlinkability
properties. The use of data separation or encryption is advised in order to mitigate the
information leakage.

8.3 FutureDirections

The theoretical analysis in Chapter 3 and Chapter 4 are based on a bit extraction scheme
that extracts a single bit using a single quantization threshold. It would be of great inter-
est to analytically determine the performance of other bit extraction schemes, for exam-
ple the reliable component selection (RCS) or the detection rate optimized bit allocation
(DROBA) schemes. The complexity for the DROBA scheme will be significantly greater
than for the RCS scheme, and it remains questionable whether a closed-form analytical
expression, as obtained in Chapter 3, can be found for the bit-error probability. With the
theoretical work we could determine the relationship between the HDS classification and
cross-matching performance, which has now been experimentally analyzed in Chapter 6.

In contrast to the theoretical work presented in Section 3.3, the classification perfor-
mance difference between the protected and unprotected templates has to be studied for
a practical scenario, where there are dependencies between feature components and the
within-class variances are not homogeneous. These parameters would have to be esti-
mated on atraining set of alimited size. Due to the limited size, estimation errors will
occur and therefore influence the performance difference observed in Section 3.3. We
conjecture that the performance difference will decrease due to the estimation errors of
the within-class variance and feature component dependencies.

It is known that a Hamming distance classifier works optimally if the bit-error proba-
bilities among the binary vector are equal. In our analysisin Chapter 3 and Chapter 4, the
bit-error probabilities are equal only for the imposter comparisons. It would be of inter-
est to analyze the possible classification performance gain by designing a bit extraction
scheme that, if possible, enforces the bit-error probabilities at both genuine and imposter
comparisons to be equal. A drawback of enforcing equal bit-error probabilities at gen-
uine comparisons is the requirement of storing subject-specific information from the bit
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extraction scheme, which we have shown to be vulnerable to cross-matching.

Furthermore, any improvements on the error-correcting capability of the ECC, bring-
ing it closer to Shannon’s bound, will directly increase the key size and therefore also the
privacy and security protection of the HDS. These improvementshave to occur mainly for
the case of large bit-error probabilities as the binary vectors extracted from the biomet-
ric sample are noisy when compared to bit-error probabilities of modern communication
channel.
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